language-icon Old Web
English
Sign In

Neutron

The neutron is a subatomic particle, symbol n or n0, with no net electric charge and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, and each has a mass of approximately one atomic mass unit, they are both referred to as nucleons. Their properties and interactions are described by nuclear physics. The neutron is a subatomic particle, symbol n or n0, with no net electric charge and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, and each has a mass of approximately one atomic mass unit, they are both referred to as nucleons. Their properties and interactions are described by nuclear physics. The chemical and nuclear properties of the nucleus are determined by the number of protons, called the atomic number, and the number of neutrons, called the neutron number. The atomic mass number is the total number of nucleons. For example, carbon has atomic number 6, and its abundant carbon-12 isotope has 6 neutrons, whereas its rare carbon-13 isotope has 7 neutrons. Some elements occur in nature with only one stable isotope, such as fluorine. Other elements occur with many stable isotopes, such as tin with ten stable isotopes. Within the nucleus, protons and neutrons are bound together through the nuclear force. Neutrons are required for the stability of nuclei, with the exception of the single-proton hydrogen atom. Neutrons are produced copiously in nuclear fission and fusion. They are a primary contributor to the nucleosynthesis of chemical elements within stars through fission, fusion, and neutron capture processes. The neutron is essential to the production of nuclear power. In the decade after the neutron was discovered by James Chadwick in 1932, neutrons were used to induce many different types of nuclear transmutations. With the discovery of nuclear fission in 1938, it was quickly realized that, if a fission event produced neutrons, each of these neutrons might cause further fission events, in a cascade known as a nuclear chain reaction. These events and findings led to the first self-sustaining nuclear reactor (Chicago Pile-1, 1942) and the first nuclear weapon (Trinity, 1945). Free neutrons, while not directly ionizing atoms, cause ionizing radiation. As such they can be a biological hazard, depending upon dose. A small natural 'neutron background' flux of free neutrons exists on Earth, caused by cosmic ray showers, and by the natural radioactivity of spontaneously fissionable elements in the Earth's crust. Dedicated neutron sources like neutron generators, research reactors and spallation sources produce free neutrons for use in irradiation and in neutron scattering experiments. An atomic nucleus is formed by a number of protons, Z (the atomic number), and a number of neutrons, N (the neutron number), bound together by the nuclear force. The atomic number defines the chemical properties of the atom, and the neutron number determines the isotope or nuclide. The terms isotope and nuclide are often used synonymously, but they refer to chemical and nuclear properties, respectively. Strictly speaking, isotopes are two or more nuclides with the same number of protons; nuclides with the same number of neutrons are called isotones. The atomic mass number, symbol A, equals Z+N. Nuclides with the same atomic mass number are called isobars. The nucleus of the most common isotope of the hydrogen atom (with the chemical symbol 1H) is a lone proton. The nuclei of the heavy hydrogen isotopes deuterium (D or 2H) and tritium (T or 3H) contain one proton bound to one and two neutrons, respectively. All other types of atomic nuclei are composed of two or more protons and various numbers of neutrons. The most common nuclide of the common chemical element lead, 208Pb, has 82 protons and 126 neutrons, for example. The table of nuclides comprises all the known nuclides. Even though it is not a chemical element, the neutron is included in this table. The free neutron has a mass of 939,565,413.3 eV/c2, or 1.674927471×10−27 kg, or 1.00866491588 u. The neutron has a mean square radius of about 0.8×10−15 m, or 0.8 fm, and it is a spin-½ fermion.The neutron has no measurable electric charge. With its positive electric charge, the proton is directly influenced by electric fields, whereas the neutron is unaffected by electric fields. The neutron has a magnetic moment, however, so the neutron is influenced by magnetic fields. The neutron's magnetic moment has a negative value, because its orientation is opposite to the neutron's spin. A free neutron is unstable, decaying to a proton, electron and antineutrino with a mean lifetime of just under 15 minutes (881.5±1.5 s). This radioactive decay, known as beta decay, is possible because the mass of the neutron is slightly greater than the proton. The free proton is stable. Neutrons or protons bound in a nucleus can be stable or unstable, however, depending on the nuclide. Beta decay, in which neutrons decay to protons, or vice versa, is governed by the weak force, and it requires the emission or absorption of electrons and neutrinos, or their antiparticles. Protons and neutrons behave almost identically under the influence of the nuclear force within the nucleus. The concept of isospin, in which the proton and neutron are viewed as two quantum states of the same particle, is used to model the interactions of nucleons by the nuclear or weak forces. Because of the strength of the nuclear force at short distances, the binding energy of nucleons is more than seven orders of magnitude larger than the electromagnetic energy binding electrons in atoms. Nuclear reactions (such as nuclear fission) therefore have an energy density that is more than ten million times that of chemical reactions. Because of the mass–energy equivalence, nuclear binding energies reduce the mass of nuclei. Ultimately, the ability of the nuclear force to store energy arising from the electromagnetic repulsion of nuclear components is the basis for most of the energy that makes nuclear reactors or bombs possible. In nuclear fission, the absorption of a neutron by a heavy nuclide (e.g., uranium-235) causes the nuclide to become unstable and break into light nuclides and additional neutrons. The positively charged light nuclides then repel, releasing electromagnetic potential energy.

[ "Nuclear magnetic resonance", "Quantum mechanics", "Atomic physics", "Nuclear physics", "Oppenheimer–Phillips process", "Neutron reflector", "Isotopes of tellurium", "neutron resonance", "Isotopes of tin" ]
Parent Topic
Child Topic
    No Parent Topic