language-icon Old Web
Sign In

Homomorphic encryption

Homomorphic encryption is a form of encryption that allows computation on ciphertexts, generating an encrypted result which, when decrypted, matches the result of the operations as if they had been performed on the plaintext. Homomorphic encryption is a form of encryption that allows computation on ciphertexts, generating an encrypted result which, when decrypted, matches the result of the operations as if they had been performed on the plaintext. Homomorphic encryption can be used for privacy-preserving outsourced storage and computation. This allows data to be encrypted and out-sourced to commercial cloud environments for processing, all while encrypted. In highly regulated industries, such as health care, homomorphic encryption can be used to enable new services by removing privacy barriers inhibiting data sharing. For example, predictive analytics in health care can be hard to apply due to medical data privacy concerns, but if the predictive analytics service provider can operate on encrypted data instead, these privacy concerns are diminished. Homomorphic encryption is a form of encryption with an additional evaluation capability for computing over encrypted data without access to the secret key. The result of such a computation remains encrypted. Homomorphic encryption can be viewed as an extension of either symmetric-key or public-key cryptography. Homomorphic refers to homomorphism in algebra: the encryption and decryption functions can be thought as homomorphisms between plaintext and ciphertext spaces. Homomorphic encryption includes multiple types of encryption schemes that can perform different classes of computations over encrypted data.Some common types of homomorphic encryption are partially homomorphic, somewhat homomorphic, leveled fully homomorphic, and fully homomorphic encryption. The computations are represented as either Boolean or arithmetic circuits. Partially homomorphic encryption encompasses schemes that support the evaluation of circuits consisting of only one type of gate, e.g., addition or multiplication. Somewhat homomorphic encryption schemes can evaluate two types of gates, but only for a subset of circuits. Leveled fully homomorphic encryption supports the evaluation of arbitrary circuits of bounded (pre-determined) depth. Fully homomorphic encryption (FHE) allows the evaluation of arbitrary circuits of unbounded depth, and is the strongest notion of homomorphic encryption. For the majority of homomorphic encryption schemes, the multiplicative depth of circuits is the main practical limitation in performing computations over encrypted data. Homomorphic encryption schemes are inherently malleable. In terms of malleability, homomorphic encryption schemes have weaker security properties than non-homomorphic schemes. Homomorphic encryption schemes have been developed using different approaches. Specifically, fully homomomorphic encryption schemes are often grouped into generations corresponding to the underlying approach. The problem of constructing a fully homomorphic encryption scheme was first proposed in 1978, within a year of publishing of the RSA scheme. For more than 30 years, it was unclear whether a solution existed. During that period, partial results included the following schemes: Craig Gentry, using lattice-based cryptography, described the first plausible construction for a fully homomorphic encryption scheme. Gentry's scheme supports both addition and multiplication operations on ciphertexts, from which it is possible to construct circuits for performing arbitrary computation. The construction starts from a somewhat homomorphic encryption scheme, which is limited to evaluating low-degree polynomials over encrypted data; it is limited because each ciphertext is noisy in some sense, and this noise grows as one adds and multiplies ciphertexts, until ultimately the noise makes the resulting ciphertext indecipherable. Gentry then shows how to slightly modify this scheme to make it bootstrappable, i.e., capable of evaluating its own decryption circuit and then at least one more operation. Finally, he shows that any bootstrappable somewhat homomorphic encryption scheme can be converted into a fully homomorphic encryption through a recursive self-embedding.For Gentry's 'noisy' scheme, the bootstrapping procedure effectively 'refreshes' the ciphertext by applying to it the decryption procedure homomorphically, thereby obtaining a new ciphertext that encrypts the same value as before but has lower noise. By 'refreshing' the ciphertext periodically whenever the noise grows too large, it is possible to compute an arbitrary number of additions and multiplications without increasing the noise too much.Gentry based the security of his scheme on the assumed hardness of two problems: certain worst-case problems over ideal lattices, and the sparse (or low-weight) subset sum problem.Gentry's Ph.D. thesisprovides additional details.The Gentry-Halevi implementation of Gentry's original cryptosystem reported timing of about 30 minutes per basic bit operation. Extensive design and implementation work in subsequent years have improved upon these early implementations by many orders of magnitude runtime performance. In 2010, Marten van Dijk, Craig Gentry, Shai Halevi and Vinod Vaikuntanathan presented a second fully homomorphic encryption scheme,which uses many of the tools of Gentry's construction, but which does not require ideal lattices. Instead, they show that the somewhat homomorphic component of Gentry's ideal lattice-based scheme can be replaced with a very simple somewhat homomorphic scheme that uses integers. The scheme is therefore conceptually simpler than Gentry's ideal lattice scheme, but has similar properties with regards to homomorphic operations and efficiency. The somewhat homomorphic component in the work of van Dijk et al. is similar to an encryption scheme proposed by Levieil and Naccache in 2008, and also to one that was proposed by Bram Cohen in 1998.Cohen's method is not even additively homomorphic, however. The Levieil–Naccache scheme supports only additions, but it can be modified to also support a small number of multiplications.Many refinements and optimizations of the scheme of van Dijk et al. were proposed in a sequence of works by Jean-Sébastien Coron, Tancrède Lepoint, Avradip Mandal, David Naccache, and Mehdi Tibouchi.Some of these works included also implementations of the resulting schemes.

[ "Encryption", "Scheme (programming language)", "outsourcing computation", "Learning with errors", "Verifiable computing", "homomorphic cryptography", "verifiable computation" ]
Parent Topic
Child Topic
    No Parent Topic