language-icon Old Web
English
Sign In

Rhenium

Rhenium is a chemical element with the symbol Re and atomic number 75. It is a silvery-gray, heavy, third-row transition metal in group 7 of the periodic table. With an estimated average concentration of 1 part per billion (ppb), rhenium is one of the rarest elements in the Earth's crust. Rhenium has the third-highest melting point and highest boiling point of any stable element at 5903 K. Rhenium resembles manganese and technetium chemically and is mainly obtained as a by-product of the extraction and refinement of molybdenum and copper ores. Rhenium shows in its compounds a wide variety of oxidation states ranging from −1 to +7. Rhenium is a chemical element with the symbol Re and atomic number 75. It is a silvery-gray, heavy, third-row transition metal in group 7 of the periodic table. With an estimated average concentration of 1 part per billion (ppb), rhenium is one of the rarest elements in the Earth's crust. Rhenium has the third-highest melting point and highest boiling point of any stable element at 5903 K. Rhenium resembles manganese and technetium chemically and is mainly obtained as a by-product of the extraction and refinement of molybdenum and copper ores. Rhenium shows in its compounds a wide variety of oxidation states ranging from −1 to +7. Discovered in 1908, rhenium was the second-last stable element to be discovered. It was named after the river Rhine in Europe. Nickel-based superalloys of rhenium are used in the combustion chambers, turbine blades, and exhaust nozzles of jet engines. These alloys contain up to 6% rhenium, making jet engine construction the largest single use for the element. The second-most important use is as a catalyst: rhenium is an excellent catalyst for hydrogenation and isomerization, and is used for example in catalytic reforming of naphtha for use in gasoline (rheniforming process). Because of the low availability relative to demand, rhenium is expensive, with price reaching an all-time high in 2008/2009 US$10,600 per kilogram (US$4,800 per pound). Due to increases in rhenium recycling and a drop in demand for rhenium in catalysts, the price of rhenium has dropped to US$2,844 per kilogram (US$1,290 per pound) as of July 2018. Rhenium (Latin: Rhenus meaning: 'Rhine') was the second last-discovered of the elements that have a stable isotope (other new elements discovered in nature since then, such as francium, are radioactive). The existence of a yet-undiscovered element at this position in the periodic table had been first predicted by Dmitri Mendeleev. Other calculated information was obtained by Henry Moseley in 1914. In 1908, Japanese chemist Masataka Ogawa announced that he had discovered the 43rd element and named it nipponium (Np) after Japan (Nippon in Japanese). However, recent analysis indicated the presence of rhenium (element 75), not element 43, although this reinterpretation has been questioned by Eric Scerri. The symbol Np was later used for the element neptunium, and the name 'nihonium', also named after Japan, along with symbol Nh, was later used for element 113. Element 113 was also discovered by a team of Japanese scientists and was named in respectful homage to Ogawa's work. Rhenium is generally considered to have been discovered by Walter Noddack, Ida Noddack, and Otto Berg in Germany. In 1925 they reported that they had detected the element in platinum ore and in the mineral columbite. They also found rhenium in gadolinite and molybdenite. In 1928 they were able to extract 1 g of the element by processing 660 kg of molybdenite. It was estimated in 1968 that 75% of the rhenium metal in the United States was used for research and the development of refractory metal alloys. It took several years from that point before the superalloys became widely used. Rhenium is a silvery-white metal with one of the highest melting points of all elements, exceeded by only tungsten and carbon. It also has one of the highest boiling points of all elements. It is also one of the densest, exceeded only by platinum, iridium and osmium. Rhenium has a hexagonal close-packed crystal structure, with lattice parameters a = 276.1 pm and c = 445.6 pm. Its usual commercial form is a powder, but this element can be consolidated by pressing and sintering in a vacuum or hydrogen atmosphere. This procedure yields a compact solid having a density above 90% of the density of the metal. When annealed this metal is very ductile and can be bent, coiled, or rolled. Rhenium-molybdenum alloys are superconductive at 10 K; tungsten-rhenium alloys are also superconductive around 4–8 K, depending on the alloy. Rhenium metal superconducts at 1.697±0.006 K. In bulk form and at room temperature and atmospheric pressure, the element resists alkalis, sulfuric acid, hydrochloric acid, dilute (but not concentrated) nitric acid, and aqua regia. Rhenium has one stable isotope, rhenium-185, which nevertheless occurs in minority abundance, a situation found only in two other elements (indium and tellurium). Naturally occurring rhenium is only 37.4% 185Re, and 62.6% 187Re, which is unstable but has a very long half-life (≈1010 years). This lifetime can be greatly affected by the charge state of rhenium atom. The beta decay of 187Re is used for rhenium-osmium dating of ores. The available energy for this beta decay (2.6 keV) is one of the lowest known among all radionuclides. The isotope rhenium-186m is notable as being one of the longest lived metastable isotopes with a half-life of around 200,000 years. There are twenty-five other recognized radioactive isotopes of rhenium.

[ "Photochemistry", "Organic chemistry", "Inorganic chemistry", "Metallurgy", "Rhenium trioxide", "Methylrhenium trioxide", "Ammonium perrhenate", "Rhenium pentachloride", "Perrhenate" ]
Parent Topic
Child Topic
    No Parent Topic