language-icon Old Web
English
Sign In

Consensus clustering

Consensus clustering is an important elaboration of traditional cluster analysis. Consensus clustering, also called cluster ensembles or aggregation of clustering (or partitions), refers to the situation in which a number of different (input) clusterings have been obtained for a particular dataset and it is desired to find a single (consensus) clustering which is a better fit in some sense than the existing clusterings. Consensus clustering is thus the problem of reconciling clustering information about the same data set coming from different sources or from different runs of the same algorithm. When cast as an optimization problem, consensus clustering is known as median partition, and has been shown to be NP-complete, even when the number of input clusterings is three. Consensus clustering for unsupervised learning is analogous to ensemble learning in supervised learning. Consensus clustering is an important elaboration of traditional cluster analysis. Consensus clustering, also called cluster ensembles or aggregation of clustering (or partitions), refers to the situation in which a number of different (input) clusterings have been obtained for a particular dataset and it is desired to find a single (consensus) clustering which is a better fit in some sense than the existing clusterings. Consensus clustering is thus the problem of reconciling clustering information about the same data set coming from different sources or from different runs of the same algorithm. When cast as an optimization problem, consensus clustering is known as median partition, and has been shown to be NP-complete, even when the number of input clusterings is three. Consensus clustering for unsupervised learning is analogous to ensemble learning in supervised learning. There are potential shortcomings for all existing clustering techniques. This may cause interpretation of results to become difficult, especially when there is no knowledge about the number of clusters. Clustering methods are also very sensitive to the initial clustering settings, which can cause non-significant data to be amplified in non-reiterative methods. An extremely important issue in cluster analysis is the validation of the clustering results, that is, how to gain confidence about the significance of the clusters provided by the clustering technique (cluster numbers and cluster assignments). Lacking an external objective criterion (the equivalent of a known class label in supervised analysis), this validation becomes somewhat elusive.Iterative descent clustering methods, such as the SOM and k-means clustering circumvent some of the shortcomings of hierarchical clustering by providing for univocally defined clusters and cluster boundaries. Consensus clustering provides a method that represents the consensus across multiple runs of a clustering algorithm, to determine the number of clusters in the data, and to assess the stability of the discovered clusters. The method can also be used to represent the consensus over multiple runs of a clustering algorithm with random restart (such as K-means, model-based Bayesian clustering, SOM, etc.), so as to account for its sensitivity to the initial conditions. It can provide data for a visualization tool to inspect cluster number, membership, and boundaries. However, they lack the intuitive and visual appeal of hierarchical clustering dendrograms, and the number of clusters must be chosen a priori. Consensus clustering can be a powerful tool for identifying clusters, but it needs to be applied with caution. It has been shown that consensus clustering is able to claim apparent stability of chance partitioning of null datasets drawn from a unimodal distribution, and thus has the potential to lead to over-interpretation of cluster stability in a real study. If clusters are not well separated, consensus clustering could lead one to conclude apparent structure when there is none, or declare cluster stability when it is subtle. To reduce the false positive potential in clustering samples (observations), Şenbabaoğlu et al recommends (1) doing a formal test of cluster strength using simulated unimodal data with the same feature space correlation structure as in the empirical data, (2) not relying solely on the consensus matrix heatmap to declare the existence of clusters, or to estimate optimal K, (3) applying the proportion of ambiguous clustering (PAC) as a simple yet powerful method to infer optimal K. PAC: In the CDF curve of a consensus matrix, the lower left portion represents sample pairs rarely clustered together, the upper right portion represents those almost always clustered together, whereas the middle segment represent those with ambiguous assignments in different clustering runs. The 'proportion of ambiguous clustering' (PAC) measure quantifies this middle segment; and is defined as the fraction of sample pairs with consensus indices falling in the interval (u1, u2) ∈ where u1 is a value close to 0 and u2 is a value close to 1 (for instance u1=0.1 and u2=0.9). A low value of PAC indicates a flat middle segment, and a low rate of discordant assignments across permuted clustering runs. We can therefore infer the optimal number of clusters by the K value having the lowest PAC. In simulated datasets with known number of clusters, consensus clustering+PAC has been shown to perform better than several other commonly used methods such as consensus clustering+Δ(K), CLEST, GAP, and silhouette width. 1. Clustering ensemble (Strehl and Ghosh): They considered various formulations for the problem, most of which reduce the problem to a hyper-graph partitioning problem. In one of their formulations they considered the same graph as in the correlation clustering problem. The solution they proposed is to compute the best k-partition of the graph, which does not take into account the penalty for merging two nodes that are far apart. 2. Clustering aggregation (Fern and Brodley): They applied the clustering aggregation idea to a collection of soft clusterings they obtained by random projections. They used an agglomerative algorithm and did not penalize for merging dissimilar nodes. 3. Fred and Jain: They proposed to use a single linkage algorithm to combine multiple runs of the k-means algorithm. 4. Dana Cristofor and Dan Simovici: They observed the connection between clustering aggregation and clustering of categorical data. They proposed information theoretic distance measures, and they propose genetic algorithms for finding the best aggregation solution.

[ "CURE data clustering algorithm", "Canopy clustering algorithm" ]
Parent Topic
Child Topic
    No Parent Topic