language-icon Old Web
English
Sign In

Schumann resonances

The Schumann resonances (SR) are a set of spectrum peaks in the extremely low frequency (ELF) portion of the Earth's electromagnetic field spectrum. Schumann resonances are global electromagnetic resonances, generated and excited by lightning discharges in the cavity formed by the Earth's surface and the ionosphere. This global electromagnetic resonance phenomenon is named after physicist Winfried Otto Schumann who predicted it mathematically in 1952. Schumann resonances occur because the space between the surface of the Earth and the conductive ionosphere acts as a closed waveguide. The limited dimensions of the Earth cause this waveguide to act as a resonant cavity for electromagnetic waves in the ELF band. The cavity is naturally excited by electric currents in lightning. Schumann resonances are the principal background in the part of the electromagnetic spectrum from 3 Hz through 60 Hz, and appear as distinct peaks at extremely low frequencies (ELF) around 7.83 Hz (fundamental), 14.3, 20.8, 27.3 and 33.8 Hz. In the normal mode descriptions of Schumann resonances, the fundamental mode is a standing wave in the Earth–ionosphere cavity with a wavelength equal to the circumference of the Earth. This lowest-frequency (and highest-intensity) mode of the Schumann resonance occurs at a frequency of approximately 4.11 Hz, but this frequency can vary slightly from a variety of factors, such as solar-induced perturbations to the ionosphere, which compresses the upper wall of the closed cavity. The higher resonance modes are spaced at approximately 6.5 Hz intervals, a characteristic attributed to the atmosphere's spherical geometry. The peaks exhibit a spectral width of approximately 20% on account of the damping of the respective modes in the dissipative cavity. The 8th partial lies at approximately 60 Hz. Observations of Schumann resonances have been used to track global lightning activity. Owing to the connection between lightning activity and the Earth's climate it has been suggested that they may also be used to monitor global temperature variations and variations of water vapor in the upper troposphere. It has been speculated that extraterrestrial lightning (on other planets) may also be detected and studied by means of their Schumann resonance signatures. Schumann resonances have been used to study the lower ionosphere on Earth and it has been suggested as one way to explore the lower ionosphere on celestial bodies. Effects on Schumann resonances have been reported following geomagnetic and ionospheric disturbances. More recently, discrete Schumann resonance excitations have been linked to transient luminous events – sprites, ELVES, jets, and other upper-atmospheric lightning. A new field of interest using Schumann resonances is related to short-term earthquake prediction. Interest in Schumann resonances was renewed in 1993 when E. R. Williams showed a correlation between the resonance frequency and tropical air temperatures, suggesting the resonance could be used to monitor global warming. In applied geophysics, the resonances of Schumann are used in the prospection of offshore hydrocarbon deposits. In 1893, George Francis FitzGerald noted that the upper layers of the atmosphere must be fairly good conductors. Assuming that the height of these layers is about 100 km above ground, he estimated that oscillations (in this case the lowest mode of the Schumann resonances) would have a period of 0.1 second. Because of this contribution, it has been suggested to rename these resonances 'Schumann–FitzGerald resonances'. However FitzGerald's findings were not widely known as they were only presented at a meeting of the British Association for the Advancement of Science, followed by a brief mention in a column in Nature. Hence the first suggestion that an ionosphere existed, capable of trapping electromagnetic waves, is attributed to Heaviside and Kennelly (1902). It took another twenty years before Edward Appleton and Barnett in 1925 were able to prove experimentally the existence of the ionosphere. Although some of the most important mathematical tools for dealing with spherical waveguides were developed by G. N. Watson in 1918, it was Winfried Otto Schumann who first studied the theoretical aspects of the global resonances of the earth–ionosphere waveguide system, known today as the Schumann resonances. In 1952–1954 Schumann, together with H. L. König, attempted to measure the resonant frequencies. However, it was not until measurements made by Balser and Wagner in 1960–1963 that adequate analysis techniques were available to extract the resonance information from the background noise. Since then there has been an increasing interest in Schumann resonances in a wide variety of fields. Lightning discharges are considered to be the primary natural source of Schumann resonance excitation; lightning channels behave like huge antennas that radiate electromagnetic energy at frequencies below about 100 kHz. These signals are very weak at large distances from the lightning source, but the Earth–ionosphere waveguide behaves like a resonator at ELF frequencies and amplifies the spectral signals from lightning at the resonance frequencies.

[ "Resonance", "Ionosphere", "Lightning" ]
Parent Topic
Child Topic
    No Parent Topic