language-icon Old Web
English
Sign In

Upwelling

Upwelling is an oceanographic phenomenon that involves wind-driven motion of dense, cooler, and usually nutrient-rich water towards the ocean surface, replacing the warmer, usually nutrient-depleted surface water. The nutrient-rich upwelled water stimulates the growth and reproduction of primary producers such as phytoplankton. Due to the biomass of phytoplankton and presence of cool water in these regions, upwelling zones can be identified by cool sea surface temperatures (SST) and high concentrations of chlorophyll-a. Upwelling is an oceanographic phenomenon that involves wind-driven motion of dense, cooler, and usually nutrient-rich water towards the ocean surface, replacing the warmer, usually nutrient-depleted surface water. The nutrient-rich upwelled water stimulates the growth and reproduction of primary producers such as phytoplankton. Due to the biomass of phytoplankton and presence of cool water in these regions, upwelling zones can be identified by cool sea surface temperatures (SST) and high concentrations of chlorophyll-a. The increased availability of nutrients in upwelling regions results in high levels of primary production and thus fishery production. Approximately 25% of the total global marine fish catches come from five upwellings that occupy only 5% of the total ocean area. Upwellings that are driven by coastal currents or diverging open ocean have the greatest impact on nutrient-enriched waters and global fishery yields. The three main drivers that work together to cause upwelling are wind, Coriolis effect, and Ekman transport.They operate differently for different types of upwelling, but the general effects are the same. In the overall process of upwelling, winds blow across the sea surface at a particular direction, which causes a wind-water interaction. As a result of the wind, the water is transported a net of 90 degrees from the direction of the wind due to Coriolis forces and Ekman transport. Ekman transport causes the surface layer of water to move at about a 45 degree angle from the direction of the wind, and the friction between that layer and the layer beneath it causes the successive layers to move in the same direction. This results in a spiral of water movement down the water column. Then, it is the Coriolis forces that dictate which way the water will move; in the Northern hemisphere, the water is transported to the right of the direction of the wind. In the Southern Hemisphere, the water is transported to the left of the wind. If this net movement of water is divergent, then upwelling of deep water occurs to replace the water that was lost.

[ "Ecology", "Climatology", "Oceanography", "Downwelling", "Ekman transport", "sea surface cooling", "High-Nutrient, low-chlorophyll", "Oxygen minimum zone" ]
Parent Topic
Child Topic
    No Parent Topic