language-icon Old Web
English
Sign In

Annexin A1

1QLS, 1AIN, 1BO930116952ENSG00000135046ENSMUSG00000024659P04083Q5T3N0P10107NM_000700NM_010730NP_000691NP_034860Annexin A1, also known as lipocortin I, is a protein that is encoded by the ANXA1 gene in humans.1ain: CRYSTAL STRUCTURE OF HUMAN ANNEXIN I AT 2.5 ANGSTROMS RESOLUTION1bo9: NMR SOLUTION STRUCTURE OF DOMAIN 1 OF HUMAN ANNEXIN I Annexin A1, also known as lipocortin I, is a protein that is encoded by the ANXA1 gene in humans. Annexin A1 belongs to the annexin family of Ca2+-dependent phospholipid-binding proteins that have a molecular weight of approximately 35,000 to 40,000 and are preferentially located on the cytosolic face of the plasma membrane. Annexin A1 protein has an apparent relative molecular mass of 40 kDa with phospholipase A2 inhibitory activity. Glucocorticoids (such as budesonide, cortisol, and beclomethasone) are a class of endogenous or synthetic anti-inflammatory steroid hormones that bind to the glucocorticoid receptor (GR), which is present in almost every vertebrate animal cell. They are used in medicine to treat diseases caused by an overactive immune system, including allergies, asthma, autoimmune diseases, and sepsis. Because they suppress inflammatory pathways, long-term use of glucocorticoid drugs can lead to side-effects such as immunodeficiency and adrenal insufficiency. The main mechanism of glucocorticoids' anti-inflammatory effects is to increase the synthesis and function of annexin A1. Annexin A1 both suppresses phospholipase A2, thereby blocking eicosanoid production, and inhibits various leukocyte inflammatory events (epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst, etc.). In other words, glucocorticoids not only suppress immune response, but also inhibit the two main products of inflammation, prostaglandins and leukotrienes. They inhibit prostaglandin synthesis at the level of phospholipase A2 as well as at the level of cyclooxygenase/PGE isomerase (COX-1 and COX-2), the latter effect being much like that of NSAIDs, potentiating the anti-inflammatory effect. In resting conditions, human and mouse immune cells such as neutrophils, monocytes, and macrophages contain high levels of annexin A1 in their cytoplasm. Following cell activation (for example, by neutrophil adhesion to endothelial-cell monolayers), annexin A1 is promptly mobilized to the cell surface and secreted. Annexin A1 promotes neutrophil detachment and apoptosis, and phagocytosis of apoptotic neutrophils by macrophages. On the other hand, it reduces the tendency of neutrophils to penetrate the endothelium of blood vessels. In vitro and in vivo analyses show that exogenous and endogenous annexin A1 counter-regulate the activities of innate immune cells, particularly extravasation and the generation of proinflammatory mediators, which ensures that a sufficient level of activation is reached but not exceeded. Annexin A1 has important opposing properties during innate and adaptive immune responses: it inhibits innate immune cells and promotes T-cell activation. The activation of T cells results in the release of annexin A1 and the expression of its receptor. This pathway seems to fine-tune the strength of TCR signalling. Higher expression of annexin A1 during pathological conditions could increase the strength of TCR signalling through the mitogen-activated protein kinase signalling pathway, thereby causing a state of hyperactivation of T cells. Since phospholipase A2 is required for the biosynthesis of the potent mediators of inflammation, prostaglandins, and leukotrienes, annexin A1 may have potential anti-inflammatory activity. Glucocorticoids stimulate production of lipocortin. In this way, synthesis of eicosanoids are inhibited. Annexin A1 has been of interest for use as a potential anticancer drug. Upon induction by modified NSAIDS and other potent anti-inflammatory drugs, annexin A1 inhibits the NF-κB signal transduction pathway, which is exploited by cancerous cells to proliferate and avoid apoptosis. ANXA1 inhibits the activation of NF-κB by binding to the p65 subunit.

[ "Annexin", "Inflammation", "Calpactin II", "Lipocortin II", "Calpactin I", "Calpactin I Heavy Chain", "Calpactins" ]
Parent Topic
Child Topic
    No Parent Topic