language-icon Old Web
English
Sign In

Indium tin oxide

Indium tin oxide (ITO) is a ternary composition of indium, tin and oxygen in varying proportions. Depending on the oxygen content, it can either be described as a ceramic or alloy. Indium tin oxide is typically encountered as an oxygen-saturated composition with a formulation of 74% In, 18% O2, and 8% Sn by weight. Oxygen-saturated compositions are so typical, that unsaturated compositions are termed oxygen-deficient ITO. It is transparent and colorless in thin layers, while in bulk form it is yellowish to grey. In the infrared region of the spectrum it acts as a metal-like mirror. Indium tin oxide (ITO) is a ternary composition of indium, tin and oxygen in varying proportions. Depending on the oxygen content, it can either be described as a ceramic or alloy. Indium tin oxide is typically encountered as an oxygen-saturated composition with a formulation of 74% In, 18% O2, and 8% Sn by weight. Oxygen-saturated compositions are so typical, that unsaturated compositions are termed oxygen-deficient ITO. It is transparent and colorless in thin layers, while in bulk form it is yellowish to grey. In the infrared region of the spectrum it acts as a metal-like mirror. Indium tin oxide is one of the most widely used transparent conducting oxides because of its two main properties: its electrical conductivity and optical transparency, as well as the ease with which it can be deposited as a thin film. As with all transparent conducting films, a compromise must be made between conductivity and transparency, since increasing the thickness and increasing the concentration of charge carriers increases the material's conductivity, but decreases its transparency. Thin films of indium tin oxide are most commonly deposited on surfaces by physical vapor deposition. Often used is electron beam evaporation, or a range of sputter deposition techniques. ITO is a mixed oxide of indium and tin with a melting point in the range 1526–1926 °C (1800–2200 K, 2800–3500 °F), depending on composition. The most commonly used material has a composition of ca In4Sn. The material is a n-type semiconductor with a large bandgap of around 4 eV. ITO is both transparent to visible light and has a relatively high electrical conductivity. These properties are utilized to great advantage in touch-screen applications such as mobile phones. Indium tin oxide (ITO) is an optoelectronic material that is applied widely in both research and industry. ITO can be used for many applications, such as flat-panel displays, smart windows, polymer-based electronics, thin film photovoltaics, glass doors of supermarket freezers, and architectural windows. Moreover, ITO thin films for glass substrates can be helpful for glass windows to conserve energy. ITO green tapes are utilized for the production of lamps that are electroluminescent, functional, and fully flexible. Also, ITO thin films are used primarily to serve as coatings that are anti-reflective and for liquid crystal displays (LCDs) and electroluminescence, where the thin films are used as conducting, transparent electrodes. ITO is often used to make transparent conductive coating for displays such as liquid crystal displays, flat panel displays, plasma displays, touch panels, and electronic ink applications. Thin films of ITO are also used in organic light-emitting diodes, solar cells, antistatic coatings and EMI shieldings. In organic light-emitting diodes, ITO is used as the anode (hole injection layer).

[ "Electrode", "Thin film", "Substrate (chemistry)", "layer", "indium tin oxide electrodes", "indium zinc oxide", "Triphenyl diamine", "antimony tin oxide" ]
Parent Topic
Child Topic
    No Parent Topic