language-icon Old Web
English
Sign In

Gravitational lens

A gravitational lens is a distribution of matter (such as a cluster of galaxies) between a distant light source and an observer, that is capable of bending the light from the source as the light travels towards the observer. This effect is known as gravitational lensing, and the amount of bending is one of the predictions of Albert Einstein's general theory of relativity. (Classical physics also predicts the bending of light, but only half that predicted by general relativity.)Gravitationally lensed Quasar.In SDSS J0952+3434, the lower arc-shaped galaxy has the characteristic shape of a galaxy that has been gravitationally lensed.Warped and distorted around SDSS J1050+0017.Galaxy SPT0615-JD existed when the Universe was just 500 million years old.Regions of intense star formation that appear warped by the effect of gravitational lensing.The lensing phenomenon allows for features as small as about 100 light-years or less.Detailed look at a gravitationally lensed type Ia supernova iPTF16geu.'Smiley' image of galaxy cluster (SDSS J1038+4849) & gravitational lensing (an Einstein ring) (HST).Abell 1689 - actual gravitational lensing effects (Hubble Space Telescope).Dark matter distribution - weak gravitational lensing (Hubble Space Telescope).Gravitational lens discovered at redshift z = 1.53.Gravitational lens with the Einstein equations, Museum Boerhaave, Leiden A gravitational lens is a distribution of matter (such as a cluster of galaxies) between a distant light source and an observer, that is capable of bending the light from the source as the light travels towards the observer. This effect is known as gravitational lensing, and the amount of bending is one of the predictions of Albert Einstein's general theory of relativity. (Classical physics also predicts the bending of light, but only half that predicted by general relativity.) Although Einstein made unpublished calculations on the subject in 1912, Orest Khvolson (1924) and Frantisek Link (1936) are generally credited with being the first to discuss the effect in print. However, this effect is more commonly associated with Einstein, who published an article on the subject in 1936. Fritz Zwicky posited in 1937 that the effect could allow galaxy clusters to act as gravitational lenses. It was not until 1979 that this effect was confirmed by observation of the so-called 'Twin QSO' SBS 0957+561. Unlike an optical lens, a gravitational lens produces a maximum deflection of light that passes closest to its center, and a minimum deflection of light that travels furthest from its center. Consequently, a gravitational lens has no single focal point, but a focal line. The term 'lens' in the context of gravitational light deflection was first used by O.J. Lodge, who remarked that it is 'not permissible to say that the solar gravitational field acts like a lens, for it has no focal length'. If the (light) source, the massive lensing object, and the observer lie in a straight line, the original light source will appear as a ring around the massive lensing object. If there is any misalignment, the observer will see an arc segment instead. This phenomenon was first mentioned in 1924 by the St. Petersburg physicist Orest Chwolson, and quantified by Albert Einstein in 1936. It is usually referred to in the literature as an Einstein ring, since Chwolson did not concern himself with the flux or radius of the ring image. More commonly, where the lensing mass is complex (such as a galaxy group or cluster) and does not cause a spherical distortion of space–time, the source will resemble partial arcs scattered around the lens. The observer may then see multiple distorted images of the same source; the number and shape of these depending upon the relative positions of the source, lens, and observer, and the shape of the gravitational well of the lensing object. There are three classes of gravitational lensing: 1. Strong lensing: where there are easily visible distortions such as the formation of Einstein rings, arcs, and multiple images. 2. Weak lensing: where the distortions of background sources are much smaller and can only be detected by analyzing large numbers of sources in a statistical way to find coherent distortions of only a few percent. The lensing shows up statistically as a preferred stretching of the background objects perpendicular to the direction to the centre of the lens.By measuring the shapes and orientations of large numbers of distant galaxies, their orientations can be averaged to measure the shear of the lensing field in any region. This, in turn, can be used to reconstruct the mass distribution in the area: in particular, the background distribution of dark matter can be reconstructed. Since galaxies are intrinsically elliptical and the weak gravitational lensing signal is small, a very large number of galaxies must be used in these surveys. These weak lensing surveys must carefully avoid a number of important sources of systematic error: the intrinsic shape of galaxies, the tendency of a camera's point spread function to distort the shape of a galaxy and the tendency of atmospheric seeing to distort images must be understood and carefully accounted for. The results of these surveys are important for cosmological parameter estimation, to better understand and improve upon the Lambda-CDM model, and to provide a consistency check on other cosmological observations. They may also provide an important future constraint on dark energy. 3. Microlensing: where no distortion in shape can be seen but the amount of light received from a background object changes in time. The lensing object may be stars in the Milky Way in one typical case, with the background source being stars in a remote galaxy, or, in another case, an even more distant quasar. The effect is small, such that (in the case of strong lensing) even a galaxy with a mass more than 100 billion times that of the Sun will produce multiple images separated by only a few arcseconds. Galaxy clusters can produce separations of several arcminutes. In both cases the galaxies and sources are quite distant, many hundreds of megaparsecs away from our Galaxy. Gravitational lenses act equally on all kinds of electromagnetic radiation, not just visible light. Weak lensing effects are being studied for the cosmic microwave background as well as galaxy surveys. Strong lenses have been observed in radio and x-ray regimes as well. If a strong lens produces multiple images, there will be a relative time delay between two paths: that is, in one image the lensed object will be observed before the other image.

[ "Redshift", "Galaxy", "Dark matter", "Microlensing Observations in Astrophysics", "Einstein ring", "Cloverleaf quasar", "Gravitational lensing formalism", "Gravitational mirage" ]
Parent Topic
Child Topic
    No Parent Topic