Industrial and production engineering

Industrial and Production Engineering (IPE) is an interdisciplinary engineering discipline that includes manufacturing technology, engineering sciences, management science, and optimization of complex processes, systems, or organizations. It is concerned with the understanding and application of Engineering Procedures in Manufacturing Processes and Production Methods. Industrial Engineering dates back all the way to the industrial revolution, initiated in 1700s by Sir Adam Smith, Henry Ford, Eli Whitney, Frank Gilbreth and Lilian Gilbreth, Henry Gantt, F.W. Taylor, etc. After the 1970s, industrial and production engineering developed worldwide and started to widely use automation and robotics. Industrial and production Engineering includes three areas: Mechanical Engineering (where the production engineering comes from), Industrial Engineering, and Management Science. The main objective for people within this discipline is to improve efficiency, drive up effectiveness of manufacturing, quality control, and to reduce cost while making their products more attractive and marketable. Industrial engineering is concerned with the development, improvement, and implementation of integrated systems of people, money, knowledge, information, equipment, energy, materials, as well as analysis and synthesis. The principles of IPE include mathematical, physical and social sciences and methods of engineering design to specify, predict, and evaluate the results to be obtained from the systems or processes currently in place or being developed. The target of production engineering is to complete the production process in the smoothest, most-judicious and most-economic way. Production engineering also overlaps substantially with manufacturing engineering and industrial engineering. The concept of production engineering is interchangeable with manufacturing engineering. Industrial and Production Engineering (IPE) is an interdisciplinary engineering discipline that includes manufacturing technology, engineering sciences, management science, and optimization of complex processes, systems, or organizations. It is concerned with the understanding and application of Engineering Procedures in Manufacturing Processes and Production Methods. Industrial Engineering dates back all the way to the industrial revolution, initiated in 1700s by Sir Adam Smith, Henry Ford, Eli Whitney, Frank Gilbreth and Lilian Gilbreth, Henry Gantt, F.W. Taylor, etc. After the 1970s, industrial and production engineering developed worldwide and started to widely use automation and robotics. Industrial and production Engineering includes three areas: Mechanical Engineering (where the production engineering comes from), Industrial Engineering, and Management Science. The main objective for people within this discipline is to improve efficiency, drive up effectiveness of manufacturing, quality control, and to reduce cost while making their products more attractive and marketable. Industrial engineering is concerned with the development, improvement, and implementation of integrated systems of people, money, knowledge, information, equipment, energy, materials, as well as analysis and synthesis. The principles of IPE include mathematical, physical and social sciences and methods of engineering design to specify, predict, and evaluate the results to be obtained from the systems or processes currently in place or being developed. The target of production engineering is to complete the production process in the smoothest, most-judicious and most-economic way. Production engineering also overlaps substantially with manufacturing engineering and industrial engineering. The concept of production engineering is interchangeable with manufacturing engineering. As for education, undergraduates normally start off by taking courses such as physics, mathematics (calculus, linear analysis, differential equations), computer science, and chemistry. Undergraduates will take more major specific courses like production and inventory scheduling, process management, CAD/CAM Manufacturing, ergonomics, etc., towards the later years of their undergraduate careers. In some parts of the world, universities will offer Bachelor's in Industrial and Production Engineering. However, most universities in the U.S. will offer them separately. Various career paths that may follow for industrial and production engineers include: Plant Engineers, Manufacturing Engineers, Quality Engineers, Process Engineers and Industrial Managers, Project Management, Manufacturing, Production and Distribution, From all the various career paths people can take as an Industrial and Production Engineer, most average a starting salary of at least $50,0000. The roots of the Industrial Engineering Profession date back to the Industrial Revolution. The technologies that helped mechanize traditional manual operations in the textile industry including the Flying shuttle, the Spinning jenny, and perhaps most importantly the Steam engine generated Economies of scale that made Mass production in centralized locations attractive for the first time. The concept of the production system had its genesis in the factories created by these innovations. Adam Smith's concepts of Division of Labour and the 'Invisible Hand' of capitalism introduced in his treatise 'The Wealth of Nations' motivated many of the technological innovators of the Industrial revolution to establish and implement factory systems. The efforts of James Watt and Matthew Boulton led to the first integrated machine manufacturing facility in the world, including the implementation of concepts such as cost control systems to reduce waste and increase productivity and the institution of skills training for craftsmen. Charles Babbage became associated with Industrial engineering because of the concepts he introduced in his book 'On the Economy of Machinery and Manufacturers' which he wrote as a result of his visits to factories in England and the United States in the early 1800s. The book includes subjects such as the time required to perform a specific task, the effects of subdividing tasks into smaller and less detailed elements, and the advantages to be gained from repetitive tasks. Eli Whitney and Simeon North proved the feasibility of the notion of Interchangeable parts in the manufacture of muskets and pistols for the US Government. Under this system, individual parts were mass-produced to tolerances to enable their use in any finished product. The result was a significant reduction in the need for skill from specialized workers, which eventually led to the industrial environment to be studied later. In 1960 to 1975, with the development of decision support systems in supply such as the Material requirements planning (MRP), people can emphasize the timing issue (inventory, production, compounding, transportation, etc.) of industrial organization. Israeli scientist Dr. Jacob Rubinovitz installed the CMMS program developed in IAI and Control-Data (Israel) in 1976 in South Africa and worldwide. In the seventies, with the penetration of Japanese management theories such as Kaizen and Kanban, Japan realized very high levels of quality and productivity. These theories improved issues of quality, delivery time, and flexibility. Companies in the west realized the great impact of Kaizen and started implementing their own Continuous improvement programs. In the nineties, following the global industry globalization process, the emphasis was on supply chain management, and customer-oriented business process design. Theory of constraints developed by an Israeli scientist Eliyahu M. Goldratt (1985) is also a significant milestone in the field.

[ "Biochemistry", "Mechanical engineering", "Microbiology", "Biotechnology", "Electrical engineering" ]
Parent Topic
Child Topic
    No Parent Topic