language-icon Old Web
English
Sign In

Super-Earth

A super-Earth is an extrasolar planet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term 'super-Earth' refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term 'gas dwarfs' may be more accurate for those at the higher end of the mass scale, as suggested by MIT professor Sara Seager, although 'mini-Neptunes' is a more common term. A super-Earth is an extrasolar planet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term 'super-Earth' refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term 'gas dwarfs' may be more accurate for those at the higher end of the mass scale, as suggested by MIT professor Sara Seager, although 'mini-Neptunes' is a more common term. In general, super-Earths are defined by their masses, and the term does not imply temperatures, compositions, orbital properties, habitability, or environments. While sources generally agree on an upper bound of 10 Earth masses (~69% of the mass of Uranus, which is the Solar System's giant planet with the least mass), the lower bound varies from 1 or 1.9 to 5, with various other definitions appearing in the popular media. The term 'super-Earth' is also used by astronomers to refer to planets bigger than Earth-like planets (from 0.8 to 1.25 Earth-radii), but smaller than mini-Neptunes (from 2 to 4 Earth-radii). This definition was made by the Kepler Mission. Some authors further suggest that the term Super-Earth might be limited to rocky planets without a significant atmosphere, or planets that have not just atmospheres but also solid surfaces or oceans with a sharp boundary between liquid and atmosphere, which the four giant planets in the Solar System do not have. Planets above 10 Earth masses are termed massive solid planets/mega-Earths or gas giant planets depending on whether they are mostly rock and ice or mostly gas. The first super-Earths were discovered by Aleksander Wolszczan and Dale Frail around the pulsar PSR B1257+12 in 1992. The two outer planets (Poltergeist and Phobetor) of the system have masses approximately four times Earth—too small to be gas giants. The first super-Earth around a main-sequence star was discovered by a team under Eugenio Rivera in 2005. It orbits Gliese 876 and received the designation Gliese 876 d (two Jupiter-sized gas giants had previously been discovered in that system). It has an estimated mass of 7.5 Earth masses and a very short orbital period of about 2 days. Due to the proximity of Gliese 876 d to its host star (a red dwarf), it may have a surface temperature of 430–650 kelvins and be too hot to support liquid water. In April 2007, a team headed by Stéphane Udry based in Switzerland announced the discovery of two new super-Earths within the Gliese 581 planetary system, both on the edge of the habitable zone around the star where liquid water may be possible on the surface. With Gliese 581c having a mass of at least 5 Earth masses and a distance from Gliese 581 of 0.073 astronomical units (AU; 6.8 million mi, 11 million km), it is on the 'warm' edge of the habitable zone around Gliese 581 with an estimated mean temperature (without taking into consideration effects from an atmosphere) of −3 degrees Celsius with an albedo comparable to Venus and 40 degrees Celsius with an albedo comparable to Earth. Subsequent research suggested Gliese 581c had likely suffered a runaway greenhouse effect like Venus. Two further super-Earths were discovered in 2006: OGLE-2005-BLG-390Lb with a mass of 5.5 Earth masses, which was found by gravitational microlensing, and HD 69830 b with a mass of 10 Earth masses. The smallest super-Earth found as of 2008 was MOA-2007-BLG-192Lb. The planet was announced by astrophysicist David P. Bennett for the international MOA collaboration on June 2, 2008. This planet has approximately 3.3 Earth masses and orbits a brown dwarf. It was detected by gravitational microlensing. In June 2008, European researchers announced the discovery of three super-Earths around the star HD 40307, a star that is only slightly less massive than our Sun. The planets have at least the following minimum masses: 4.2, 6.7, and 9.4 times Earth's. The planets were detected by the radial velocity method by the HARPS (High Accuracy Radial Velocity Planet Searcher) in Chile. In addition, the same European research team announced a planet 7.5 times the mass of Earth orbiting the star HD 181433. This star also has a Jupiter-like planet that orbits every three years.

[ "Circumstellar habitable zone", "Planetary system", "Terrestrial planet", "Exoplanet", "Tau Ceti e" ]
Parent Topic
Child Topic
    No Parent Topic