language-icon Old Web
English
Sign In

Urban heat island

An urban heat island (UHI) is an urban area or metropolitan area that is significantly warmer than its surrounding rural areas due to human activities. The temperature difference is usually larger at night than during the day, and is most apparent when winds are weak. UHI is most noticeable during the summer and winter. The main cause of the urban heat island effect is from the modification of land surfaces. Waste heat generated by energy usage is a secondary contributor. As a population center grows, it tends to expand its area and increase its average temperature. The term heat island is also used; the term can be used to refer to any area that is relatively hotter than the surrounding, but generally refers to human-disturbed areas.However, over the Northern Hemisphere land areas where urban heat islands are most apparent, both the trends of lower-tropospheric temperature and surface air temperature show no significant differences. In fact, the lower-tropospheric temperatures warm at a slightly greater rate over North America (about 0.28°C/decade using satellite data) than do the surface temperatures (0.27°C/decade), although again the difference is not statistically significant.Studies that have looked at hemispheric and global scales conclude that any urban-related trend is an order of magnitude smaller than decadal and longer time-scale trends evident in the series (e.g., Jones et al., 1990; Peterson et al., 1999). This result could partly be attributed to the omission from the gridded data set of a small number of sites (<1%) with clear urban-related warming trends. In a worldwide set of about 270 stations, Parker (2004, 2006) noted that warming trends in night minimum temperatures over the period 1950 to 2000 were not enhanced on calm nights, which would be the time most likely to be affected by urban warming. Thus, the global land warming trend discussed is very unlikely to be influenced significantly by increasing urbanisation (Parker, 2006). ... Accordingly, this assessment adds the same level of urban warming uncertainty as in the TAR: 0.006°C per decade since 1900 for land, and 0.002°C per decade since 1900 for blended land with ocean, as ocean UHI is zero. An urban heat island (UHI) is an urban area or metropolitan area that is significantly warmer than its surrounding rural areas due to human activities. The temperature difference is usually larger at night than during the day, and is most apparent when winds are weak. UHI is most noticeable during the summer and winter. The main cause of the urban heat island effect is from the modification of land surfaces. Waste heat generated by energy usage is a secondary contributor. As a population center grows, it tends to expand its area and increase its average temperature. The term heat island is also used; the term can be used to refer to any area that is relatively hotter than the surrounding, but generally refers to human-disturbed areas. Monthly rainfall is greater downwind of cities, partially due to the UHI. Increases in heat within urban centers increases the length of growing seasons, and decreases the occurrence of weak tornadoes. The UHI decreases air quality by increasing the production of pollutants such as ozone, and decreases water quality as warmer waters flow into area streams and put stress on their ecosystems. Not all cities have a distinct urban heat island, and the heat island characteristics depend strongly on the background climate of the area in which the city is located. Mitigation of the urban heat island effect can be accomplished through the use of green roofs and the use of lighter-colored surfaces in urban areas, which reflect more sunlight and absorb less heat. Concerns have been raised about possible contribution from urban heat islands to global warming. While some lines of research did not detect a significant impact, other studies have concluded that heat islands can have measurable effects on climate phenomena at the global scale. The phenomenon was first investigated and described by Luke Howard in the 1810s, although he was not the one to name the phenomenon. There are several causes of an urban heat island (UHI); for example, dark surfaces absorb significantly more solar radiation, which causes urban concentrations of roads and buildings to heat more than suburban and rural areas during the day; materials commonly used in urban areas for pavement and roofs, such as concrete and asphalt, have significantly different thermal bulk properties (including heat capacity and thermal conductivity) and surface radiative properties (albedo and emissivity) than the surrounding rural areas. This causes a change in the energy budget of the urban area, often leading to higher temperatures than surrounding rural areas. Another major reason is the lack of evapotranspiration (for example, through lack of vegetation) in urban areas. The U.S. Forest Service found in 2018 that cities in the United States are losing 36 million trees each year. With a decreased amount of vegetation, cities also lose the shade and evaporative cooling effect of trees. Other causes of a UHI are due to geometric effects. The tall buildings within many urban areas provide multiple surfaces for the reflection and absorption of sunlight, increasing the efficiency with which urban areas are heated. This is called the 'urban canyon effect'. Another effect of buildings is the blocking of wind, which also inhibits cooling by convection and prevents pollutants from dissipating. Waste heat from automobiles, air conditioning, industry, and other sources also contributes to the UHI. High levels of pollution in urban areas can also increase the UHI, as many forms of pollution change the radiative properties of the atmosphere. UHI not only raises urban temperatures but also increases ozone concentrations because ozone is a green house gas whose formation will accelerate with the increase of temperature. Some cities exhibit a heat island effect, largest at night. Seasonally, UHI shows up both in summer and winter. The typical temperature difference is several degrees between the center of the city and surrounding fields. The difference in temperature between an inner city and its surrounding suburbs is frequently mentioned in weather reports, as in '68 °F (20 °C) downtown, 64 °F (18 °C) in the suburbs'. 'The annual mean air temperature of a city with 1 million people or more can be 1.8–5.4 °F (1.0–3.0 °C) warmer than its surroundings. In the evening, the difference can be as high as 22 °F (12 °C).' The UHI can be defined as either the air temperature difference (the canopy UHI) or the surface temperature difference (surface UHI) between the urban and the rural area. These two show slightly different diurnal and seasonal variability and have different causes

[ "Ecology", "Hydrology", "Climatology", "Meteorology", "anthropogenic heat", "urban warming", "Urban reforestation", "rural station", "urban canopy" ]
Parent Topic
Child Topic
    No Parent Topic