language-icon Old Web
English
Sign In

Thermal wind

The thermal wind is the variation in strength of wind with height due to, on one hand, a balance between the Coriolis and pressure-gradient forces in the atmosphere and, on the other hand, horizontal temperature gradients. It is the primary physical mechanism for the jet stream and plays an important role in other large-scale atmospheric phenomena. The thermal wind ensures the jet stream is typically strongest in the upper half of the troposphere, which is the atmospheric layer extending from the surface of the planet up to a height of 12 km to 15 km. The thermal wind is the variation in strength of wind with height due to, on one hand, a balance between the Coriolis and pressure-gradient forces in the atmosphere and, on the other hand, horizontal temperature gradients. It is the primary physical mechanism for the jet stream and plays an important role in other large-scale atmospheric phenomena. The thermal wind ensures the jet stream is typically strongest in the upper half of the troposphere, which is the atmospheric layer extending from the surface of the planet up to a height of 12 km to 15 km. Mathematically, the thermal wind relation defines a vertical wind shear – a variation in wind speed or direction with height. The wind shear in this case is a function of a horizontal temperature gradient, which is a variation in temperature over some horizontal distance. Also called baroclinic flow, the thermal wind varies with height in proportion to the horizontal temperature gradient. The thermal wind relation results from hydrostatic balance and geostrophic balance in the presence of a temperature gradient along constant pressure surfaces, or isobars. The term thermal wind is often considered a misnomer, since it really describes the change in wind with height, rather than the wind itself. However, one can view the thermal wind as a geostrophic wind that varies with height, so that the term wind seems appropriate. In the early years of meteorology, when data was scarce, the wind field could be estimated using the thermal wind relation and knowledge of a surface wind speed and direction as well as thermodynamic soundings aloft. In this way, the thermal wind relation acts to define the wind itself, rather than just its shear. Many authors retain the thermal wind moniker, even though it describes a wind gradient, sometimes offering a clarification to that effect. The thermal wind is the change in the amplitude or sign of the geostrophic wind due to a horizontal temperature gradient. The geostrophic wind is an idealized wind that results from a balance of forces along a horizontal dimension. Whenever the Earth's rotation plays a dominant role in fluid dynamics, as in the mid-latitudes, a balance between the Coriolis force and the pressure-gradient force develops. Intuitively, a horizontal difference in pressure pushes air across that difference in a similar way that the horizontal difference in the height of a hill causes objects to roll downhill. However, the Coriolis force intervenes and nudges the air towards the right (in the northern hemisphere). This is illustrated in panel (a) of the figure below. The balance that develops between these two forces results in a flow that parallels the horizontal pressure difference, or pressure gradient. In addition, when forces acting in the vertical dimension are dominated by the vertical pressure-gradient force and the gravitational force, hydrostatic balance occurs. In a barotropic atmosphere, where density is a function only of pressure, a horizontal pressure gradient will drive a geostrophic wind that is constant with height. However, if a horizontal temperature gradient exists along isobars, the isobars will also vary with the temperature. In the mid-latitudes there often is a positive coupling between pressure and temperature. Such a coupling causes the slope of the isobars to increase with height, as illustrated in panel (b) of the figure to the left. Because isobars are steeper at higher elevations, the associated pressure gradient force is stronger there. However, the Coriolis force is the same, so the resulting geostrophic wind at higher elevations must be greater in the direction of the pressure force. In a baroclinic atmosphere, where density is a function of both pressure and temperature, such horizontal temperature gradients can exist. The difference in horizontal wind speed with height that results is a vertical wind shear, traditionally called the thermal wind. The geopotential thickness of an atmospheric layer defined by two different pressures is described by the hypsometric equation: Φ 1 − Φ 0 =   R T ¯ ln ⁡ [ p 0 p 1 ] {displaystyle Phi _{1}-Phi _{0}= R{overline {T}}ln left} , where R {displaystyle ,R,} is the specific gas constant for air, Φ n {displaystyle ,Phi _{n},} is the geopotential at pressure level p n {displaystyle ,p_{n},} , and T ¯ {displaystyle {overline {T}}} is the vertically-averaged temperature of the layer. This formula shows that the layer thickness is proportional to the temperature. When there is a horizontal temperature gradient, the thickness of the layer would be greatest where the temperature is greatest.

[ "Wind gradient", "Wind shear", "Wind profile power law" ]
Parent Topic
Child Topic
    No Parent Topic