language-icon Old Web
English
Sign In

Combined cycle

In electric power generation a combined cycle power plant is an assembly of heat engines that work in tandem from the same source of heat, converting it into mechanical energy to drive electrical generators. The principle is that after completing its cycle (in the first engine), the temperature of the working fluid in the system is still high enough that a second subsequent heat engine extracts energy from the heat that the first engine produced. By generating electricity from multiple streams of work, the overall net efficiency of the system may be increased by 50–60%. That is, from an overall efficiency of say 34% (simple cycle), to possibly an overall efficiency of 62% (combined cycle), 84% of theoretical efficiency (Carnot cycle) In electric power generation a combined cycle power plant is an assembly of heat engines that work in tandem from the same source of heat, converting it into mechanical energy to drive electrical generators. The principle is that after completing its cycle (in the first engine), the temperature of the working fluid in the system is still high enough that a second subsequent heat engine extracts energy from the heat that the first engine produced. By generating electricity from multiple streams of work, the overall net efficiency of the system may be increased by 50–60%. That is, from an overall efficiency of say 34% (simple cycle), to possibly an overall efficiency of 62% (combined cycle), 84% of theoretical efficiency (Carnot cycle)

[ "Power station", "Turbine", "gas turbines", "Power (physics)", "Repowering", "Staged combustion cycle", "Turboexpander", "Closed-cycle gas turbine", "Integrated gasification combined cycle" ]
Parent Topic
Child Topic
    No Parent Topic