language-icon Old Web
English
Sign In

Integer

An integer (from the Latin integer meaning 'whole') is a number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, 5 1/2, and √2 are not. An integer (from the Latin integer meaning 'whole') is a number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, 5 1/2, and √2 are not. The set of integers consists of zero (0), the positive natural numbers (1, 2, 3, …), also called whole numbers or counting numbers, and their additive inverses (the negative integers, i.e., −1, −2, −3, …). The set of integers is often denoted by a boldface Z ('Z') or blackboard bold Z {displaystyle mathbb {Z} } (Unicode U+2124 ℤ) standing for the German word Zahlen (, 'numbers'). Z is a subset of the set of all rational numbers Q, in turn a subset of the real numbers R. Like the natural numbers, Z is countably infinite. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers. In fact, the (rational) integers are the algebraic integers that are also rational numbers. The symbol Z can be annotated to denote various sets, with varying usage amongst different authors: Z+, Z+ or Z> for the positive integers, Z≥ for non-negative integers, Z≠ for non-zero integers. Some authors use Z* for non-zero integers, others use it for non-negative integers, or for {–1, 1}. Additionally, Zp is used to denote either the set of integers modulo p, i.e., a set of congruence classes of integers, or the set of p-adic integers. Like the natural numbers, Z is closed under the operations of addition and multiplication, that is, the sum and product of any two integers is an integer. However, with the inclusion of the negative natural numbers, and, importantly, 0, Z (unlike the natural numbers) is also closed under subtraction. The integers form a unital ring which is the most basic one, in the following sense: for any unital ring, there is a unique ring homomorphism from the integers into this ring. This universal property, namely to be an initial object in the category of rings, characterizes the ring Z. Z is not closed under division, since the quotient of two integers (e.g., 1 divided by 2), need not be an integer. Although the natural numbers are closed under exponentiation, the integers are not (since the result can be a fraction when the exponent is negative). The following table lists some of the basic properties of addition and multiplication for any integers a, b and c. In the language of abstract algebra, the first five properties listed above for addition say that Z under addition is an abelian group. It is also a cyclic group, since every non-zero integer can be written as a finite sum 1 + 1 + … + 1 or (−1) + (−1) + … + (−1). In fact, Z under addition is the only infinite cyclic group, in the sense that any infinite cyclic group is isomorphic to Z.

[ "Combinatorics", "Discrete mathematics", "Algebra", "Mathematical analysis", "Euclidean division", "Freiman's theorem", "Cyclotomic polynomial", "Fermat number", "Postage stamp problem" ]
Parent Topic
Child Topic
    No Parent Topic