language-icon Old Web
English
Sign In

Benign tumor

A benign tumor is a mass of cells (tumor) that lacks the ability to invade neighboring tissue or metastasize. However, they can sometimes be quite large. When removed, benign tumors usually do not grow back, whereas malignant tumors sometimes do. Unlike most benign tumors elsewhere in the body, benign brain tumors can be life threatening. Benign tumors generally have a slower growth rate than malignant tumors and the tumor cells are usually more differentiated (cells have normal features). They are typically surrounded by an outer surface (fibrous sheath of connective tissue) or remain with the epithelium. Common examples of benign tumors include moles and uterine fibroids. A benign tumor is a mass of cells (tumor) that lacks the ability to invade neighboring tissue or metastasize. However, they can sometimes be quite large. When removed, benign tumors usually do not grow back, whereas malignant tumors sometimes do. Unlike most benign tumors elsewhere in the body, benign brain tumors can be life threatening. Benign tumors generally have a slower growth rate than malignant tumors and the tumor cells are usually more differentiated (cells have normal features). They are typically surrounded by an outer surface (fibrous sheath of connective tissue) or remain with the epithelium. Common examples of benign tumors include moles and uterine fibroids. Although benign tumors will not metastasize or locally invade tissues, some types may still produce negative health effects. The growth of benign tumors produces a 'mass effect' that can compress tissues and may cause nerve damage, reduction of blood to an area of the body (ischaemia), tissue death (necrosis) and organ damage. The health effects of the tumor may be more prominent if the tumor is within an enclosed space such as the cranium, respiratory tract, sinus or inside bones. Tumors of endocrine tissues may overproduce certain hormones, especially when the cells are well differentiated. Examples include thyroid adenomas and adrenocortical adenomas. Although most benign tumors are not life-threatening, many types of benign tumors have the potential to become cancerous (malignant) through a process known as tumor progression. For this reason and other possible negative health effects, some benign tumors are removed by surgery. Benign tumors are very diverse, and may be asymptomatic or may cause specific symptoms depending on their anatomic location and tissue type. They grow outwards, producing large rounded masses, which can cause what is known as a 'mass effect'. This growth can cause compression of local tissues or organs, which can cause many effects such as blockage of ducts, reduced blood flow (ischaemia), tissue death (necrosis) and nerve pain or damage. Some tumors also produce hormones that can lead to life-threatening situations. Insulinomas can produce large amounts of insulin leading to hypoglycemia. Pituitary adenomas can cause elevated levels of hormones such as growth hormone and insulin-like growth factor-1, which cause acromegaly; prolactin; ACTH and cortisol, which cause Cushings disease; TSH, which causes hyperthyroidism; and FSH and LH. Bowel intussusception can occur with various benign colonic tumors. Cosmetic effects can be caused by tumors, especially those of the skin, possibly causing psychological effects on the person with the tumor. Vascular tumors can bleed, which in some cases can be substantial, leading to anemia. PTEN hamartoma syndrome comprises four distinct hamartomatous disorders characterised by genetic mutations in the PTEN gene; Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome, Proteus syndrome and Proteus-like syndrome. Although they all have distinct clinical features, the formation of hamartomas is present in all four syndromes. PTEN is a tumor suppressor gene that is involved in cellular signalling. Absent or dysfunctional PTEN protein allows cells to over-proliferate, causing hamartomas. Cowden syndrome is an autosomal dominant genetic disorder characterised by multiple benign hamartomas (trichilemmomas and mucocutaneous papillomatous papules) as well as a predisposition for cancers of multiple organs including the breast and thyroid. Bannayan-Riley-Ruvalcaba syndrome is a congenital disorder characterised by hamartomatous intestinal polyposis, macrocephaly, lipomatosis, hemangiomatosis and glans penis macules. Proteus syndrome is characterised by nevi, asymmetric overgrowth of various body parts, adipose tissue dysregulation, cystadenomas, adenomas, vascular malformation. Familial adenomatous polyposis (FAP) is a familial cancer syndrome caused by mutations in the APC gene. In this disorder adenomatous polyps are present in the colon that invariably progress into colon cancer. The APC gene is a tumor suppressor and its product is involved in many cellular processes. Inactivation of the APC gene leads to a buildup of a protein called β-catenin, which activates two transcription factors; T-cell factor (TCF) and lymphoid enhancer factor (LEF). These cause the upregulation of many genes involved in cell proliferation, differentiation, migration and apoptosis (programmed cell death), causing the growth of benign tumors. Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder caused by mutations in the genesTSC1 and TSC2, which produce the proteins hamartin and tuberin, respectively. This disorder presents with many benign hamartomatous tumors including angiofibromas, renal angiomyolipomas, pulmonary lymphangiomyomatosis. Tuberin and hamartin inhibit the mTOR protein in normal cellular physiology and the inactivation of the TSC tumor suppressors causes an increase in mTOR activity. This leads to the activation of genes and the production of proteins that increase cell growth. Von Hippel-Lindau disease is a dominantly inherited cancer syndrome that massively increases the risk of various tumors including benign hemangioblastomas and malignant pheochromocytomas, renal cell carcinomas, pancreatic endocrine tumors and endolymphatic sac tumors. It is caused by genetic mutations in the Von Hippel–Lindau tumor suppressor gene. The VHL protein (pVHL) is involved in cellular signalling in oxygen starved (hypoxic) cells. One role of pVHL is to cause the cellular degradation of another protein, HIF1α. Dysfunctional pVHL leads to accumulation of HIF1α, which in turn activates the production of several genes involved in cell growth and blood vessel production (VEGF, PDGFβ, TGFα and erythropoietin).

[ "Genetics", "Surgery", "Pathology", "Diabetes mellitus", "Radiology", "Ectopic Hamartomatous Thymoma" ]
Parent Topic
Child Topic
    No Parent Topic