language-icon Old Web
English
Sign In

Seismic noise

In geology and other related disciplines, seismic noise is a generic name for a relatively persistent vibration of the ground, due to a multitude of causes, that is a non-interpretable or unwanted component of signals recorded by seismometers. In geology and other related disciplines, seismic noise is a generic name for a relatively persistent vibration of the ground, due to a multitude of causes, that is a non-interpretable or unwanted component of signals recorded by seismometers. Physically, seismic noise consists mostly of surface waves. Low frequency waves (below 1 Hz) are generally called microseisms; high frequency waves (above 1 Hz) are called microtremors. Its causes include nearby human activities (such as traffic or heavy machinery), winds and other atmospheric phenomena, and ocean waves. Seismic noise is relevant to any discipline that depends on seismology, such as geology, oil exploration, hydrology, and earthquake engineering, and structural health monitoring. It is often called ambient wavefield or ambient vibrations in those disciplines. (However, the latter term may also refer to vibrations transmitted through by air, building, or supporting structures.) Seismic noise is a nuisance for activities that are sensitive to vibrations, such as accurate measurements, precision milling, telescopes, and crystal growing. On the other hand, seismic noise does have some practical uses, for example to determine the low-strain dynamic properties of civil-engineering structures, such as bridges, buildings, and dams; or to determine the elastic properties of the soil and subsoil in order to draw seismic microzonation maps showing the predicted ground response to earthquakes. Research on the origin of seismic noise indicates that the low frequency part of the spectrum (below 1 Hz) is due to natural causes, chiefly ocean waves. In particular the peak between 0.1 and 0.3 Hz is clearly associated with the interaction of water waves of nearly equal frequencies but opposite directions. At high frequency (above 1 Hz), seismic noise is mainly produced by human activities such as road traffic and industrial work; but there are also natural sources, like rivers. Around 1 Hz, wind and other atmospheric phenomena are also a major source of ground vibrations. The amplitude of seismic noise vibrations is typically in the order of 0.1 to 10 μm/s. High and low noise models as a function of frequency have been proposed. The seismic noise includes a small number of body waves (P- and S-waves), but surface waves (Love and Rayleigh waves) predominate. These waves are dispersive, meaning that their phase velocity varies with frequency (generally, it decreases with increasing frequency). Since the dispersion curve (phase velocity or slowness as a function of frequency) is tightly related to the variations of the shear-wave velocity with depth in the different ground layers, it can be used as a non-invasive tool to investigate the underground structure. Seismic noise has very low amplitude and cannot be felt by humans. Their amplitude was also too low to be recorded by the first seismometers at the end of 19th century. However, at that time, the famous Japanese seismologist Fusakichi Omori could already record ambient vibrations in buildings, where the amplitudes are magnified. He found their resonance frequencies and studied their evolution as a function of damage. After the 1933 Long Beach earthquake in California, a large experiment campaign led by D. S. Carder in 1935 allowed to record and analyze ambient vibrations in more than 200 buildings. These data were used in the design codes to estimate resonance frequencies of buildings but the interest of the method went down until the 1950s. Interest on ambient vibrations in structures grew further, especially in California and Japan, thanks to the work of earthquake engineers, including G. Housner, D. Hudson, K. Kanai, T. Tanaka, and others.

[ "Geophysics", "Acoustics", "Civil engineering", "Seismology" ]
Parent Topic
Child Topic
    No Parent Topic