language-icon Old Web
English
Sign In

Polyhydroxyalkanoates

Polyhydroxyalkanoates or PHAs are polyesters produced in nature by numerous microorganisms, including through bacterial fermentation of sugar or lipids. When produced by bacteria they serve as both a source of energy and as a carbon store. More than 150 different monomers can be combined within this family to give materials with extremely different properties. These plastics are biodegradable and are used in the production of bioplastics.Structure of poly-3-hydroxyvalerate (PHV)Structure of poly-4-hydroxybutyrate (P4HB) Polyhydroxyalkanoates or PHAs are polyesters produced in nature by numerous microorganisms, including through bacterial fermentation of sugar or lipids. When produced by bacteria they serve as both a source of energy and as a carbon store. More than 150 different monomers can be combined within this family to give materials with extremely different properties. These plastics are biodegradable and are used in the production of bioplastics. They can be either thermoplastic or elastomeric materials, with melting points ranging from 40 to 180 °C. The mechanical properties and biocompatibility of PHA can also be changed by blending, modifying the surface or combining PHA with other polymers, enzymes and inorganic materials, making it possible for a wider range of applications. To produce PHA, a culture of a micro-organism such as Cupriavidus necator is placed in a suitable medium and fed appropriate nutrients so that it multiplies rapidly. Once the population has reached a substantial level, the nutrient composition is changed to force the micro-organism to synthesize PHA. The yield of PHA obtained from the intracellular granule inclusions can be as high as 80% of the organism's dry weight. The biosynthesis of PHA is usually caused by certain deficiency conditions (e.g. lack of macro elements such as phosphorus, nitrogen, trace elements, or lack of oxygen) and the excess supply of carbon sources. Polyesters are deposited in the form of highly refractive granules in the cells. Depending upon the microorganism and the cultivation conditions, homo- or copolyesters with different hydroxyalkanic acids are generated. PHA granules are then recovered by disrupting the cells. Recombinant Bacillus subtilis str. pBE2C1 and Bacillus subtilis str. pBE2C1AB were used in production of polyhydroxyalkanoates (PHA) and it was shown that they could use malt waste as carbon source for lower cost of PHA production.

[ "Polymer", "Bacteria", "Biochemistry", "Composite material", "Organic chemistry", "Pseudomonas extremaustralis", "Plasticicumulans acidivorans", "Novosphingobium nitrogenifigens", "PHA granule", "Acetoacetyl-CoA reductase" ]
Parent Topic
Child Topic
    No Parent Topic