language-icon Old Web
English
Sign In

Ensemble learning

In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone.Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives. In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone.Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives. Supervised learning algorithms are most commonly described as performing the task of searching through a hypothesis space to find a suitable hypothesis that will make good predictions with a particular problem. Even if the hypothesis space contains hypotheses that are very well-suited for a particular problem, it may be very difficult to find a good one. Ensembles combine multiple hypotheses to form a (hopefully) better hypothesis. The term ensemble is usually reserved for methods that generate multiple hypotheses using the same base learner.The broader term of multiple classifier systems also covers hybridization of hypotheses that are not induced by the same base learner. Evaluating the prediction of an ensemble typically requires more computation than evaluating the prediction of a single model, so ensembles may be thought of as a way to compensate for poor learning algorithms by performing a lot of extra computation. Fast algorithms such as decision trees are commonly used in ensemble methods (for example, random forests), although slower algorithms can benefit from ensemble techniques as well. By analogy, ensemble techniques have been used also in unsupervised learning scenarios, for example in consensus clustering or in anomaly detection. An ensemble is itself a supervised learning algorithm, because it can be trained and then used to make predictions. The trained ensemble, therefore, represents a single hypothesis. This hypothesis, however, is not necessarily contained within the hypothesis space of the models from which it is built. Thus, ensembles can be shown to have more flexibility in the functions they can represent. This flexibility can, in theory, enable them to over-fit the training data more than a single model would, but in practice, some ensemble techniques (especially bagging) tend to reduce problems related to over-fitting of the training data. Empirically, ensembles tend to yield better results when there is a significant diversity among the models. Many ensemble methods, therefore, seek to promote diversity among the models they combine. Although perhaps non-intuitive, more random algorithms (like random decision trees) can be used to produce a stronger ensemble than very deliberate algorithms (like entropy-reducing decision trees). Using a variety of strong learning algorithms, however, has been shown to be more effective than using techniques that attempt to dumb-down the models in order to promote diversity. While the number of component classifiers of an ensemble has a great impact on the accuracy of prediction, there is a limited number of studies addressing this problem. A priori determining of ensemble size and the volume and velocity of big data streams make this even more crucial for online ensemble classifiers. Mostly statistical tests were used for determining the proper number of components. More recently, a theoretical framework suggested that there is an ideal number of component classifiers for an ensemble such that having more or less than this number of classifiers would deteriorate the accuracy. It is called 'the law of diminishing returns in ensemble construction.' Their theoretical framework shows that using the same number of independent component classifiers as class labels gives the highest accuracy. The Bayes optimal classifier is a classification technique. It is an ensemble of all the hypotheses in the hypothesis space. On average, no other ensemble can outperform it. The naive Bayes optimal classifier is a version of this that assumes that the data is conditionally independent on the class and makes the computation more feasible. Each hypothesis is given a vote proportional to the likelihood that the training dataset would be sampled from a system if that hypothesis were true. To facilitate training data of finite size, the vote of each hypothesis is also multiplied by the prior probability of that hypothesis. The Bayes optimal classifier can be expressed with the following equation: where y {displaystyle y} is the predicted class, C {displaystyle C} is the set of all possible classes, H {displaystyle H} is the hypothesis space, P {displaystyle P} refers to a probability, and T {displaystyle T} is the training data. As an ensemble, the Bayes optimal classifier represents a hypothesis that is not necessarily in H {displaystyle H} . The hypothesis represented by the Bayes optimal classifier, however, is the optimal hypothesis in ensemble space (the space of all possible ensembles consisting only of hypotheses in H {displaystyle H} ).

[ "Machine learning", "Data mining", "Artificial intelligence", "Pattern recognition", "rotation forest", "ensemble diversity", "ensemble selection", "ensemble strategy" ]
Parent Topic
Child Topic
    No Parent Topic