Mitochondrial permeability transition pore

The mitochondrial permeability transition pore (mPTP or MPTP; also referred to as PTP, mTP or MTP) is a protein that is formed in the inner membrane of the mitochondria under certain pathological conditions such as traumatic brain injury and stroke. Opening allows increase in the permeability of the mitochondrial membranes to molecules of less than 1500 Daltons in molecular weight. Induction of the permeability transition pore, mitochondrial membrane permeability transition (mPT or MPT), can lead to mitochondrial swelling and cell death through apoptosis or necrosis depending on the particular biological setting. The mitochondrial permeability transition pore (mPTP or MPTP; also referred to as PTP, mTP or MTP) is a protein that is formed in the inner membrane of the mitochondria under certain pathological conditions such as traumatic brain injury and stroke. Opening allows increase in the permeability of the mitochondrial membranes to molecules of less than 1500 Daltons in molecular weight. Induction of the permeability transition pore, mitochondrial membrane permeability transition (mPT or MPT), can lead to mitochondrial swelling and cell death through apoptosis or necrosis depending on the particular biological setting. The MPTP was originally discovered by Haworth and Hunter in 1979 and has been found to be involved in neurodegeneration, hepatotoxicity from Reye-related agents, cardiac necrosis and nervous and muscular dystrophies among other deleterious events inducing cell damage and death. MPT is one of the major causes of cell death in a variety of conditions. For example, it is key in neuronal cell death in excitotoxicity, in which overactivation of glutamate receptors causes excessive calcium entry into the cell. MPT also appears to play a key role in damage caused by ischemia, as occurs in a heart attack and stroke. However, research has shown that the MPT pore remains closed during ischemia, but opens once the tissues are reperfused with blood after the ischemic period, playing a role in reperfusion injury. MPT is also thought to underlie the cell death induced by Reye's syndrome, since chemicals that can cause the syndrome, like salicylate and valproate, cause MPT. MPT may also play a role in mitochondrial autophagy. Cells exposed to toxic amounts of Ca2+ ionophores also undergo MPT and death by necrosis. While the MPT modulation has been widely studied, little is known about its structure. Initial experiments by Szabó and Zoratti proposed the MPT may comprise Voltage Dependent Anion Channel (VDAC) molecules. Nevertheless, this hypothesis was shown to be incorrect as VDAC−/− mitochondria were still capable to undergo MPT. Further hypothesis by Halestrap´s group convincingly suggested the MPT was formed by the inner membrane Adenine Nucleotide Translocase (ANT), but genetic ablation of such protein still led to MPT onset. Thus, the only MPTP components identified so far are the TSPO (previously known as the peripheral benzodiazepine receptor) located in the mitochondrial outer membrane and cyclophilin-D in the mitochondrial matrix. Mice lacking the gene for cyclophilin-D develop normally, but their cells do not undergo Cyclosporin A-sensitive MPT, and they are resistant to necrotic death from ischemia or overload of Ca2+ or free radicals. However, these cells do die in response to stimuli that kill cells through apoptosis, suggesting that MPT does not control cell death by apoptosis. Agents that transiently block MPT include the immune suppressant cyclosporin A (CsA); N-methyl-Val-4-cyclosporin A (MeValCsA), a non-immunosuppressant derivative of CsA; another non-immunosuppressive agent, NIM811, 2-aminoethoxydiphenyl borate (2-APB), bongkrekic acid and alisporivir (also known as Debio-025). TRO40303 is a newly synthetitised MPT blocker developed by Trophos company and currently is in Phase I clinical trial. Various factors enhance the likelihood of MPTP opening. In some mitochondria, such as those in the central nervous system, high levels of Ca2+ within mitochondria can cause the MPT pore to open. This is possibly because Ca2+ binds to and activates Ca2+ binding sites on the matrix side of the MPTP.MPT induction is also due to the dissipation of the difference in voltage across the inner mitochondrial membrane (known as transmembrane potential, or Δψ).In neurons and astrocytes, the contribution of membrane potential to MPT induction is complex, see.The presence of free radicals, another result of excessive intracellular calcium concentrations, can also cause the MPT pore to open. Other factors that increase the likelihood that the MPTP will be induced include the presence of certain fatty acids, and inorganic phosphate. However, these factors cannot open the pore without Ca2+, though at high enough concentrations, Ca2+ alone can induce MPT. Stress in the endoplasmic reticulum can be a factor in triggering MPT.

[ "Programmed cell death", "Membrane potential", "Mitochondrial membrane permeability transition", "Cyclophilin D", "Mitochondrial Cyclophilin", "Sanglifehrin A", "PPIF" ]
Parent Topic
Child Topic
    No Parent Topic