language-icon Old Web
English
Sign In

3D optical data storage

3D optical data storage is any form of optical data storage in which information can be recorded or read with three-dimensional resolution (as opposed to the two-dimensional resolution afforded, for example, by CD). 3D optical data storage is any form of optical data storage in which information can be recorded or read with three-dimensional resolution (as opposed to the two-dimensional resolution afforded, for example, by CD). This innovation has the potential to provide petabyte-level mass storage on DVD-sized discs (120 mm). Data recording and readback are achieved by focusing lasers within the medium. However, because of the volumetric nature of the data structure, the laser light must travel through other data points before it reaches the point where reading or recording is desired. Therefore, some kind of nonlinearity is required to ensure that these other data points do not interfere with the addressing of the desired point. No commercial product based on 3D optical data storage has yet arrived on the mass market, although several companies are actively developing the technology and claim that it may become available 'soon'. Current optical data storage media, such as the CD and DVD store data as a series of reflective marks on an internal surface of a disc. In order to increase storage capacity, it is possible for discs to hold two or even more of these data layers, but their number is severely limited since the addressing laser interacts with every layer that it passes through on the way to and from the addressed layer. These interactions cause noise that limits the technology to approximately 10 layers. 3D optical data storage methods circumvent this issue by using addressing methods where only the specifically addressed voxel (volumetric pixel) interacts substantially with the addressing light. This necessarily involves nonlinear data reading and writing methods, in particular nonlinear optics. 3D optical data storage is related to (and competes with) holographic data storage. Traditional examples of holographic storage do not address in the third dimension, and are therefore not strictly '3D', but more recently 3D holographic storage has been realized by the use of microholograms. Layer-selection multilayer technology (where a multilayer disc has layers that can be individually activated e.g. electrically) is also closely related. As an example, a prototypical 3D optical data storage system may use a disc that looks much like a transparent DVD. The disc contains many layers of information, each at a different depth in the media and each consisting of a DVD-like spiral track. In order to record information on the disc a laser is brought to a focus at a particular depth in the media that corresponds to a particular information layer. When the laser is turned on it causes a photochemical change in the media. As the disc spins and the read/write head moves along a radius, the layer is written just as a DVD-R is written. The depth of the focus may then be changed and another entirely different layer of information written. The distance between layers may be 5 to 100 micrometers, allowing >100 layers of information to be stored on a single disc. In order to read the data back (in this example), a similar procedure is used except this time instead of causing a photochemical change in the media the laser causes fluorescence. This is achieved e.g. by using a lower laser power or a different laser wavelength. The intensity or wavelength of the fluorescence is different depending on whether the media has been written at that point, and so by measuring the emitted light the data is read. The size of individual chromophore molecules or photoactive color centers is much smaller than the size of the laser focus (which is determined by the diffraction limit). The light therefore addresses a large number (possibly even 109) of molecules at any one time, so the medium acts as a homogeneous mass rather than a matrix structured by the positions of chromophores. The origins of the field date back to the 1950s, when Yehuda Hirshberg developed the photochromic spiropyrans and suggested their use in data storage. In the 1970s, Valeri Barachevskii demonstrated that this photochromism could be produced by two–photon excitation, and finally at the end of the 1980s Peter M. Rentzepis showed that this could lead to three-dimensional data storage. Most of the developed systems are based to some extent on the original ideas of Rentzepis. A wide range of physical phenomena for data reading and recording have been investigated, large numbers of chemical systems for the medium have been developed and evaluated, and extensive work has been carried out in solving the problems associated with the optical systems required for the reading and recording of data. Currently, several groups remain working on solutions with various levels of development and interest in commercialization.

[ "Electronic engineering", "Optoelectronics", "Operating system", "Optics", "Holographic Versatile Disc" ]
Parent Topic
Child Topic
    No Parent Topic