language-icon Old Web
English
Sign In

Resource depletion

Resource depletion is the consumption of a resource faster than it can be replenished. Natural resources are commonly divided between renewable resources and non-renewable resources (see also mineral resource classification). Use of either of these forms of resources beyond their rate of replacement is considered to be resource depletion. The value of a resource is a direct result of its availability in nature and the cost of extracting the resource, the more a resource is depleted the more the value of the resource increases. There are several types of resource depletion the most known being; Aquifer depletion, deforestation, mining for fossil fuels and minerals, pollution or contamination of resources, slash-and-burn agricultural practices, Soil erosion, and overconsumption, excessive or unnecessary use of resources. Resource depletion is the consumption of a resource faster than it can be replenished. Natural resources are commonly divided between renewable resources and non-renewable resources (see also mineral resource classification). Use of either of these forms of resources beyond their rate of replacement is considered to be resource depletion. The value of a resource is a direct result of its availability in nature and the cost of extracting the resource, the more a resource is depleted the more the value of the resource increases. There are several types of resource depletion the most known being; Aquifer depletion, deforestation, mining for fossil fuels and minerals, pollution or contamination of resources, slash-and-burn agricultural practices, Soil erosion, and overconsumption, excessive or unnecessary use of resources. Resource depletion is most commonly used in reference to farming, fishing, mining, water usage, and consumption of fossil fuels. Depletion of wildlife populations is called defaunation. Main Article: Depletion (accounting) In an effort to offset the depletion of resources theorists have come up with depletion accounting or better known as 'green accounting'. Depletion accounting aims to account for nature's value on an equal footing with the market economy. Resource depletion accounting uses data provided from countries to estimate the adjustments needed due to their use and depletion of the natural capital available to them. Natural capital are natural resources such as mineral deposits or timber stocks. Depletion accounting factors in several different influences such as the number of years until resource exhaustion, the cost of resource extraction and the demand of the resource. Resource extraction industries make up a large part of the economic activity in developing countries, this in turn leads to higher levels of resource depletion and environmental degradation in developing countries. Theorists argue that implementation of resource depletion accounting is necessary in developing countries. Depletion accounting also seeks to measure the social value of natural resources and ecosystems. Measurement of social value is sought through ecosystem services which are defined as the benefits of nature to households, communities and economies. There are many different groups interested in depletion accounting. Environmentalists are interested in depletion accounting as a way to track the use of natural resources over time, hold governments accountable or to compare their environmental conditions to those of another country. Economists want to measure resource depletion to understand how financially reliant countries or corporations are on non-renewable resources, whether this use can be sustained and the financial drawbacks of switching to renewable resources in light of the depleting resources. Depletion accounting is complex to implement as nature is not as quantifiable like cars, houses or bread. For depletion accounting to work, appropriate units of natural resources must be established so that natural resources can be viable in the market economy. The main issues that arise when trying to do so are, determining a suitable unit of account, deciding how to deal with 'collective' nature of a complete ecosystem, delineating the borderline of the ecosystem and defining the extent of possible duplication when the resource interacts in more than one ecosystem. Some economists want to include measurement of the benefits arising from public goods provided by nature, but currently there are no market indicators of value. Globally, environmental economics has not been able to provide a consensus of measurement units of nature's services. Minerals are needed to provide food, clothing, and housing. A United States Geological Survey (USGS) study found a significant long-term trend over the 20th century for non-renewable resources such as minerals to supply a greater proportion of the raw material inputs to the non-fuel, non-food sector of the economy; an example is the greater consumption of crushed stone, sand, and gravel used in construction. Large-scale exploitation of minerals began in the Industrial Revolution around 1760 in England and has grown rapidly ever since. Technological improvements have allowed humans to dig deeper and access lower grades and different types of ore over that time. Virtually all basic industrial metals (copper, iron, bauxite, etc.), as well as rare earth minerals, face production output limitations from time to time, because supply involves large up-front investments and is therefore slow to respond to rapid increases in demand.

[ "Ecology", "Environmental resource management", "Natural resource economics", "Peak minerals" ]
Parent Topic
Child Topic
    No Parent Topic