language-icon Old Web
English
Sign In

Ionization energy

In physics and chemistry, ionization energy (American English spelling) or ionisation energy (British English spelling), denoted Ei, is the minimum amount of energy required to remove the most loosely bound electron, the valence electron, of an isolated neutral gaseous atom or molecule. It is quantitatively expressed as In physics and chemistry, ionization energy (American English spelling) or ionisation energy (British English spelling), denoted Ei, is the minimum amount of energy required to remove the most loosely bound electron, the valence electron, of an isolated neutral gaseous atom or molecule. It is quantitatively expressed as where X is any atom or molecule capable of ionization, X+ is that atom or molecule with an electron removed, and e− is the removed electron. This is generally an endothermic process. Generally, the closer the outermost electrons are to the nucleus of the atom , the higher the atom's or element's ionization energy. The sciences of physics and chemistry use different measures of ionization energy. In physics, the unit is the amount of energy required to remove a single electron from a single atom or molecule, expressed as electronvolts. In chemistry, the unit is the amount of energy required for all of the atoms in a mole of substance to lose one electron each: molar ionization energy or enthalpy, expressed as kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol). Comparison of Ei of elements in the periodic table reveals two periodic trends: The latter trend results from the outer electron shell being progressively farther from the nucleus, with the addition of one inner shell per row as one moves down the column. The nth ionization energy refers to the amount of energy required to remove an electron from the species with a charge of (n-1). For example, the first three ionization energies are defined as follows: The term ionization potential is an older name for ionization energy, because the oldest method of measuring ionization energy was based on ionizing a sample and accelerating the electron removed using an electrostatic potential. However this term is now considered obsolete.Some factors affecting the ionization energy include: Generally, the (n+1)th ionization energy is larger than the nth ionization energy. When the next ionization energy involves removing an electron from the same electron shell, the increase in ionization energy is primarily due to the increased net charge of the ion from which the electron is being removed. Electrons removed from more highly charged ions of a particular element experience greater forces of electrostatic attraction; thus, their removal requires more energy. In addition, when the next ionization energy involves removing an electron from a lower electron shell, the greatly decreased distance between the nucleus and the electron also increases both the electrostatic force and the distance over which that force must be overcome to remove the electron. Both of these factors further increase the ionization energy.

[ "Ionization", "Koopmans' theorem", "Molar ionization energies of the elements", "Bisphenol Z", "Appearance energy" ]
Parent Topic
Child Topic
    No Parent Topic