language-icon Old Web
English
Sign In

Anoxic waters

Anoxic waters are areas of sea water, fresh water, or groundwater that are depleted of dissolved oxygen and are a more severe condition of hypoxia. The US Geological Survey defines anoxic groundwater as those with dissolved oxygen concentration of less than 0.5 milligrams per litre. This condition is generally found in areas that have restricted water exchange. Anoxic waters are areas of sea water, fresh water, or groundwater that are depleted of dissolved oxygen and are a more severe condition of hypoxia. The US Geological Survey defines anoxic groundwater as those with dissolved oxygen concentration of less than 0.5 milligrams per litre. This condition is generally found in areas that have restricted water exchange. In most cases, oxygen is prevented from reaching the deeper levels by a physical barrier as well as by a pronounced density stratification, in which, for instance, heavier hypersaline waters rest at the bottom of a basin. Anoxic conditions will occur if the rate of oxidation of organic matter by bacteria is greater than the supply of dissolved oxygen. Anoxic waters are a natural phenomenon, and have occurred throughout geological history. In fact, some postulate that the Permian–Triassic extinction event, a mass extinction of species from world's oceans, resulted from widespread anoxic conditions. At present anoxic basins exist, for example, in the Baltic Sea, and elsewhere (see below). Recently, there have been some indications that eutrophication has increased the extent of the anoxic zones in areas including the Baltic Sea, the Gulf of Mexico, and Hood Canal in Washington State. Anoxic conditions result from several factors; for example, stagnation conditions, density stratification, inputs of organic material, and strong thermoclines. Examples of which are fjords (where shallow sills at their entrance prevent circulation) and deep ocean western boundaries where circulation is especially low while production at upper levels is exceptionally high. In wastewater treatment, the absence of oxygen alone is indicated anoxic while the term anaerobic is used to indicate the absence of any common electron acceptor such as nitrate, sulfate or oxygen. When oxygen is depleted in a basin, bacteria first turn to the second-best electron acceptor, which in sea water, is nitrate. Denitrification occurs, and the nitrate will be consumed rather rapidly. After reducing some other minor elements, the bacteria will turn to reducing sulfate. This results in the byproduct of hydrogen sulfide (H2S), a chemical toxic to most biota and responsible for the characteristic 'rotten egg' smell and dark black sediment color. SO4−2 + H+1 → H2S +H2O + chemical energy If anoxic sea water becomes reoxygenized, sulfides will be oxidized to sulfate according to the chemical equation: HS− + 2 O2 → HSO4−

[ "Sediment", "Ecology", "Environmental chemistry", "Waste management", "Oceanography", "Halorhabdus tiamatea", "Bacillus selenitireducens", "Green Sulphur Bacteria", "Framboid", "Orca Basin" ]
Parent Topic
Child Topic
    No Parent Topic