language-icon Old Web
English
Sign In

Cosmic Origins Spectrograph

The Cosmic Origins Spectrograph (COS) is a science instrument that was installed on the Hubble Space Telescope during Servicing Mission 4 (STS-125) in May 2009. It is designed for ultraviolet (90–320 nm) spectroscopy of faint point sources with a resolving power of ≈1,550–24,000. Science goals include the study of the origins of large scale structure in the universe, the formation and evolution of galaxies, and the origin of stellar and planetary systems and the cold interstellar medium. COS was developed and built by the Center for Astrophysics and Space Astronomy (CASA-ARL) at the University of Colorado at Boulder and the Ball Aerospace and Technologies Corporation in Boulder, Colorado.Spectroscopy lies at the heart of astrophysical inference. Our understanding of the origin and evolution of the cosmos critically depends on our ability to make quantitative measurements of physical parameters such as the total mass, distribution, motions, temperatures, and composition of matter in the Universe. Detailed information on all of these properties can be gleaned from high-quality spectroscopic data. For distant objects, some of these properties (e.g., motions and composition) can only be measured through spectroscopy.Ultraviolet (UV) spectroscopy provides some of the most fundamental diagnostic data necessary for discerning the physical characteristics of planets, stars, galaxies, and interstellar and intergalactic matter. The UV offers access to spectral features that provide key diagnostic information that cannot be obtained at other wavelengths. The Cosmic Origins Spectrograph (COS) is a science instrument that was installed on the Hubble Space Telescope during Servicing Mission 4 (STS-125) in May 2009. It is designed for ultraviolet (90–320 nm) spectroscopy of faint point sources with a resolving power of ≈1,550–24,000. Science goals include the study of the origins of large scale structure in the universe, the formation and evolution of galaxies, and the origin of stellar and planetary systems and the cold interstellar medium. COS was developed and built by the Center for Astrophysics and Space Astronomy (CASA-ARL) at the University of Colorado at Boulder and the Ball Aerospace and Technologies Corporation in Boulder, Colorado. COS is installed into the axial instrument bay previously occupied by the Corrective Optics Space Telescope Axial Replacement (COSTAR) instrument, and is intended to complement the Space Telescope Imaging Spectrograph (STIS) that was repaired during the same mission. While STIS operates across a wider wavelength range, COS is many times more sensitive in the UV. The Cosmic Origins Spectrograph is an ultraviolet spectrograph that is optimized for high sensitivity and moderate spectral resolution of compact (point like) objects (stars, quasars, etc.). COS has two principal channels, one for Far Ultraviolet (FUV) spectroscopy covering 90–205 nm and one for Near Ultraviolet (NUV) spectroscopy spanning 170–320 nm. The FUV channel can work with one of three diffraction gratings, the NUV with one of four, providing both low and medium resolution spectra (table 1). In addition, COS has a narrow field of view NUV imaging mode intended for target acquisition. One key technique for achieving high sensitivity in the FUV is minimizing the number of optics. This is done because FUV reflection and transmission efficiencies are typically quite low compared to what is common at visible wavelengths. In accomplishing this, the COS FUV channel uses a single (selectable) optic to diffract the light from HST, correct for the Hubble spherical aberration, focus the diffracted light onto the FUV detector and correct for astigmatism typical of this sort of instrument. Since aberration correction is performed after the light passes into the instrument, the entrance to the spectrograph must be an extended aperture, rather than the traditional narrow entrance slit, in order to allow the entire aberrated HST image from a point source to enter the instrument. The 2.5 arc second diameter entrance aperture allows ≈ 95% of the light from compact sources to enter COS, yielding high sensitivity at the design resolution for compact sources.

[ "Redshift", "Hubble Deep Field", "hubble space telescope" ]
Parent Topic
Child Topic
    No Parent Topic