language-icon Old Web
English
Sign In

Speech coding

Speech coding is an application of data compression of digital audio signals containing speech. Speech coding uses speech-specific parameter estimation using audio signal processing techniques to model the speech signal, combined with generic data compression algorithms to represent the resulting modeled parameters in a compact bitstream. Speech coding is an application of data compression of digital audio signals containing speech. Speech coding uses speech-specific parameter estimation using audio signal processing techniques to model the speech signal, combined with generic data compression algorithms to represent the resulting modeled parameters in a compact bitstream. The two most important applications of speech coding are mobile telephony and voice over IP. The techniques employed in speech coding are similar to those used in audio data compression and audio coding where knowledge in psychoacoustics is used to transmit only data that is relevant to the human auditory system. For example, in voiceband speech coding, only information in the frequency band 400 Hz to 3500 Hz is transmitted but the reconstructed signal is still adequate for intelligibility. Speech coding differs from other forms of audio coding in that speech is a simpler signal than most other audio signals, and a lot more statistical information is available about the properties of speech. As a result, some auditory information which is relevant in audio coding can be unnecessary in the speech coding context. In speech coding, the most important criterion is preservation of intelligibility and 'pleasantness' of speech, with a constrained amount of transmitted data. In addition, most speech applications require low coding delay, as long coding delays interfere with speech interaction. Speech coders are of two types: From this point of view, the A-law and μ-law algorithms (G.711) used in traditional PCM digital telephony can be seen as an earlier precursor of speech encoding, requiring only 8 bits per sample but giving effectively 12 bits of resolution. The logarithmic companding laws are consistent with human hearing perception in that a low-amplitude noise is heard along a low-amplitude speech signal but is masked by a high-amplitude one. Although this would generate unacceptable distortion in a music signal, the peaky nature of speech waveforms, combined with the simple frequency structure of speech as a periodic waveform having a single fundamental frequency with occasional added noise bursts, make these very simple instantaneous compression algorithms acceptable for speech. A wide variety of other algorithms were tried at the time, mostly on delta modulation variants, but after a careful consideration, the A-law/μ-law algorithms were chosen by the designers of the early digital telephony systems. At the time of their design, their 33% bandwidth reduction for a very low complexity made an excellent engineering compromise. Their audio performance remains acceptable, and there was no need to replace them in the stationary phone network. In 2008, G.711.1 codec, which has a scalable structure, was standardized by ITU-T. The input sampling rate is 16 kHz.

[ "Speech recognition", "Artificial intelligence", "Pattern recognition", "Coding (social sciences)", "Telecommunications", "Speex", "Audio mining", "segmental signal to noise ratio", "waveform coding", "Adaptive Multi-Rate audio codec" ]
Parent Topic
Child Topic
    No Parent Topic