language-icon Old Web
English
Sign In

Compressed air energy storage

Compressed air energy storage (CAES) is a way to store energy generated at one time for use at another time using compressed air. At utility scale, energy generated during periods of low energy demand (off-peak) can be released to meet higher demand (peak load) periods. This is especially important in an age where intermittent renewable energy sources such as wind and solar power are becoming more prominent energy sources. CAES systems can have a vital impact in making sure the electricity demands can be met at peak hours.Small scale systems have long been used in such applications as propulsion of mine locomotives. Large scale applications must conserve the heat energy associated with compressing air; dissipating heat lowers the energy efficiency of the storage system. Compression of air creates heat; the air is warmer after compression. Expansion removes heat. If no extra heat is added, the air will be much colder after expansion. If the heat generated during compression can be stored and used during expansion, the efficiency of the storage improves considerably. There are three ways in which a CAES system can deal with the heat. Air storage can be adiabatic, diabatic, isothermal, or near isothermal. Adiabatic storage continues to keep the heat produced by compression and returns it to the air as it is expanded to generate power. This is a subject of ongoing study, with no utility scale plants as of 2015, but a German project ADELE is planning to bring a demonstration plant (360 MWh storage capacity) into service in 2016. The theoretical efficiency of adiabatic storage approaches 100% with perfect insulation, but in practice round trip efficiency is expected to be 70%. Heat can be stored in a solid such as concrete or stone, or more likely in a fluid such as hot oil (up to 300 °C) or molten salt solutions (600 °C). Packed beds have been proposed as thermal storage units for A-CAES systems. A study numerically simulated an Adiabatic Compressed Air Energy Storage system using packed bed thermal energy storage. The efficiency of the simulated system under continuous operation was calculated to be between 70.5% and 71%. Diabatic storage dissipates much of the heat of compression with intercoolers (thus approaching isothermal compression) into the atmosphere as waste; essentially wasting, thereby, the renewable energy used to perform the work of compression. Upon removal from storage, the temperature of this compressed air is the one indicator of the amount of stored energy that remains in this air. Consequently, if the air temperature is low for the energy recovery process, the air must be substantially re-heated prior to expansion in the turbine to power a generator. This reheating can be accomplished with a natural gas fired burner for utility grade storage or with a heated metal mass. As recovery is often most needed when renewable sources are quiescent, fuel must be burned to make up for the wasted heat. This degrades the efficiency of the storage-recovery cycle; and while this approach is relatively simple, the burning of fuel adds to the cost of the recovered electrical energy and compromises the ecological benefits associated with most renewable energy sources. Nevertheless, this is thus far the only system which has been implemented commercially. The McIntosh, Alabama CAES plant requires 2.5 MJ of electricity and 1.2 MJ lower heating value (LHV) of gas for each MJ of energy output, corresponding to an energy recovery efficiency of about 27%. A General Electric 7FA 2x1 combined cycle plant, one of the most efficient natural gas plants in operation, uses 1.85 MJ (LHV) of gas per MJ generated, a 54% thermal efficiency. Isothermal compression and expansion approaches attempt to maintain operating temperature by constant heat exchange to the environment. They are only practical for low power levels, without very effective heat exchangers. The theoretical efficiency of isothermal energy storage approaches 100% for perfect heat transfer to the environment. In practice neither of these perfect thermodynamic cycles is obtainable, as some heat losses are unavoidable. Near isothermal compression (and expansion) is a process in which a gas is compressed in very close proximity to a large incompressible thermal mass such as a heat absorbing and releasing structure (HARS) or a water spray. A HARS is usually made up of a series of parallel fins. As the gas is compressed the heat of compression is rapidly transferred to the thermal mass, so the gas temperature is stabilised. An external cooling circuit is then used to maintain the temperature of the thermal mass. The isothermal efficiency (Z) is a measure of where the process lies between an adiabatic and isothermal process. If the efficiency is 0%, then it is totally adiabatic; with an efficiency of 100%, it is totally isothermal. Typically with a near isothermal process an efficiency of 90-95% can be expected.

[ "Compressed air", "Energy storage", "Renewable energy" ]
Parent Topic
Child Topic
    No Parent Topic