language-icon Old Web
English
Sign In

Aldehyde

An aldehyde /ˈældɪhaɪd/ is a compound containing a functional group with the structure −CHO, consisting of a carbonyl center (a carbon double-bonded to oxygen) with the carbon atom also bonded to hydrogen and to an R group, which is any generic alkyl or side chain. The group—without R—is the aldehyde group, also known as the formyl group. Aldehydes are common in organic chemistry, and many fragrances are aldehydes. An aldehyde /ˈældɪhaɪd/ is a compound containing a functional group with the structure −CHO, consisting of a carbonyl center (a carbon double-bonded to oxygen) with the carbon atom also bonded to hydrogen and to an R group, which is any generic alkyl or side chain. The group—without R—is the aldehyde group, also known as the formyl group. Aldehydes are common in organic chemistry, and many fragrances are aldehydes. Aldehydes feature an sp2-hybridized, planar carbon center that is connected by a double bond to oxygen and a single bond to hydrogen. The C–H bond is not ordinarily acidic. Because of resonance stabilization of the conjugate base, an α-hydrogen in an aldehyde (not shown in the picture above) is far more acidic, with a pKa near 17, compared to the acidity of a typical alkane (pKa about 50). This acidification is attributed to (i) the electron-withdrawing quality of the formyl center and (ii) the fact that the conjugate base, an enolate anion, delocalizes its negative charge. Related to (i), the aldehyde group is somewhat polar. The formyl proton itself does not readily undergo deprotonation. The anionic species formally derived from deprotonation of an aldehyde proton, known as an acyl anion, is highly unstable and must be kept at low temperatures. In fact, with the exception of certain hindered dialkylformamides, the synthesis of acyl anions by direct deprotonation is not a feasible route, since the deprotonated species will almost immediately add to the highly reactive carbonyl of the starting material to form an acyloin compound. For this reason, the acidity of the formyl proton is difficult to measure. In the case of HCONiPr2, the acidity of the formyl group was found to be very close to that of diisopropylamine (pKa ~ 36). The gas-phase acidity of formaldehyde was found to be 1,640 kJ/mol (393 kcal/mol), making it more acidic than hydrogen (1,700 kJ/mol, 400 kcal/mol) and ammonia (1,680 kJ/mol, 402 kcal/mol), but less acidic than water (1,600 kJ/mol, 390 kcal/mol) in the gas phase. Aldehydes (except those without an alpha carbon, or without protons on the alpha carbon, such as formaldehyde and benzaldehyde) can exist in either the keto or the enol tautomer. Keto–enol tautomerism is catalyzed by either acid or base. Usually the enol is the minority tautomer, but it is more reactive. At around 360 kJ/mol (85 kcal/mol), the formyl C–H bond is weaker than that of a typical bond between hydrogen and an sp2-hybridized carbon. Thus aldehydes are prone to undergo hydrogen-atom abstraction in the presence of free radicals, a fact accounts for the ease with which aldehydes undergo autoxidation. The common names for aldehydes do not strictly follow official guidelines, such as those recommended by IUPAC, but these rules are useful. IUPAC prescribes the following nomenclature for aldehydes: The word aldehyde was coined by Justus von Liebig as a contraction of the Latin alcohol dehydrogenatus (dehydrogenated alcohol). In the past, aldehydes were sometimes named after the corresponding alcohols, for example, vinous aldehyde for acetaldehyde. (Vinous is from Latin vinum 'wine', the traditional source of ethanol, cognate with vinyl.) The term formyl group is derived from the Latin word formica 'ant'. This word can be recognized in the simplest aldehyde, formaldehyde, and in the simplest carboxylic acid, formic acid. Aldehydes have properties that are diverse and that depend on the remainder of the molecule. Smaller aldehydes are more soluble in water, formaldehyde and acetaldehyde completely so. The volatile aldehydes have pungent odors. Aldehydes, particularly arylaldehydes, degrade in air via the process of autoxidation. The acyl hydroperoxide is generated, which comproportionates with the starting material to generate two equivalents of the carboxylic acid. Old bottles of benzaldehyde, a liquid, will often accumulate a crusty solid on the bottle cap or even suspended in the bulk liquid. This material is benzoic acid, which can be removed by using a base wash followed by distillation.

[ "Catalysis", "Coniferyl aldehyde", "Isobutyraldehyde", "Hexaldehyde", "LAURYL ALDEHYDE", "Ketone Reductases" ]
Parent Topic
Child Topic
    No Parent Topic