language-icon Old Web
English
Sign In

Ferrite (magnet)

A ferrite is a ceramic material made by mixing and firing large proportions of iron(III) oxide (Fe2O3, rust) blended with small proportions of one or more additional metallic elements, such as barium, manganese, nickel, and zinc. They are both electrically non-conductive, meaning that they are insulators, and ferrimagnetic, meaning they can easily be magnetized or attracted to a magnet. Ferrites can be divided into two families based on their resistance to being demagnetized (magnetic coercivity). A ferrite is a ceramic material made by mixing and firing large proportions of iron(III) oxide (Fe2O3, rust) blended with small proportions of one or more additional metallic elements, such as barium, manganese, nickel, and zinc. They are both electrically non-conductive, meaning that they are insulators, and ferrimagnetic, meaning they can easily be magnetized or attracted to a magnet. Ferrites can be divided into two families based on their resistance to being demagnetized (magnetic coercivity). Hard ferrites have high coercivity, so are difficult to demagnetize. They are used to make permanent magnets for applications such as refrigerator magnets, loudspeakers, and small electric motors. Soft ferrites have low coercivity, so they easily change their magnetization and act as conductors of magnetic fields. They are used in the electronics industry to make efficient magnetic cores called ferrite cores for high-frequency inductors and transformers, and in various microwave components. Ferrite compounds are extremely low cost, being made of mostly rusted iron (iron oxide), and have excellent corrosion resistance. They are very stable and difficult to demagnetize, and can be made with both high and low coercive forces. Yogoro Kato and Takeshi Takei of the Tokyo Institute of Technology synthesized the first ferrite compounds in 1930. Ferrites are usually ferrimagnetic ceramic compounds derived from iron oxides. Magnetite (Fe3O4) is a famous example. Like most of the other ceramics, ferrites are hard, brittle, and poor conductors of electricity. Many ferrites adopt the spinel structure with the formula AB2O4, where A and B represent various metal cations, usually including iron (Fe). Spinel ferrites usually adopt a crystal motif consisting of cubic close-packed (fcc) oxides (O2−) with A cations occupying one eighth of the tetrahedral holes and B cations occupying half of the octahedral holes, i.e., A2+B3+2O2−4. Ferrite crystals do not adopt the ordinary spinel structure, but rather the inverse spinel structure: One eighth of the tetrahedral holes are occupied by B cations, one fourth of the octahedral sites are occupied by A cations. and the other one fourth by B cation. It is also possible to have mixed structure spinel ferrites with formula O4 where δ is the degree of inversion. The magnetic material known as 'ZnFe' has the formula ZnFe2O4, with Fe3+ occupying the octahedral sites and Zn2+ occupy the tetrahedral sites, it is an example of normal structure spinel ferrite. Some ferrites adopt hexagonal crystal structure, like barium and strontium ferrites BaFe12O19 (BaO:6Fe2O3) and SrFe12O19 (SrO:6Fe2O3).

[ "Nuclear magnetic resonance", "Composite material", "Metallurgy", "Ceramic materials", "Electrical engineering", "Manganese ferrite", "Zinc ferrite", "ferrite layer", "Nickel-zinc ferrite", "magnetostatic waves" ]
Parent Topic
Child Topic
    No Parent Topic