language-icon Old Web
English
Sign In

Cyclin D

Cyclin D is a member of the cyclin protein family that is involved in regulating cell cycle progression. The synthesis of cyclin D is initiated during G1 and drives the G1/S phase transition. Cyclin D protein is anywhere from 155 (in zebra mussel) to 477 (in Drosophila) amino acids in length. Cyclin D is a member of the cyclin protein family that is involved in regulating cell cycle progression. The synthesis of cyclin D is initiated during G1 and drives the G1/S phase transition. Cyclin D protein is anywhere from 155 (in zebra mussel) to 477 (in Drosophila) amino acids in length. Once cells reach a critical cell size (and if no mating partner is present in yeast) and if growth factors and mitogens (for multicellular organism) or nutrients (for unicellular organism) are present, cells enter the cell cycle. In general, all stages of the cell cycle are chronologically separated in humans and are triggered by cyclin-Cdk complexes which are periodically expressed and partially redundant in function. Cyclins are eukaryotic proteins that form holoenzymes with cyclin-dependent protein kinases (Cdk), which they activate. The abundance of cyclins is generally regulated by protein synthesis and degradation through an APC/C dependent pathway. Cyclin D is one of the major cyclins produced in terms of its functional importance. It interacts with four Cdks: Cdk2, 4, 5, and 6. In proliferating cells, cyclin D-Cdk4/6 complex accumulation is of great importance for cell cycle progression. Namely, cyclin D-Cdk4/6 complex partially phosphorylates retinoblastoma tumor suppressor protein (Rb), whose inhibition can induce expression of some genes (for example: cyclin E) important for S phase progression. Drosophila and many other organisms only have one cyclin D protein. In mice and humans, two more cyclin D proteins have been identified. The three homologues, called cyclin D1, cyclin D2, and cyclin D3 are expressed in most proliferating cells and the relative amounts expressed differ in various cell types. The most studied homologues of cyclin D are found in yeast and viruses. The yeast homologue of cyclin D, referred to as CLN3, interacts with Cdc28 (cell division control protein) during G1. In viruses, like Saimiriine herpesvirus 2 (Herpesvirus saimiri) and Human herpesvirus 8 (HHV-8/Kaposi's sarcoma-associated herpesvirus) cyclin D homologues have acquired new functions in order to manipulate the host cell’s metabolism to the viruses’ benefit.Viral cyclin D binds human Cdk6 and inhibits Rb by phosphorylating it, resulting in free transcription factors which result in protein transcription that promotes passage through G1 phase of the cell cycle. Other than Rb, viral cyclin D-Cdk6 complex also targets p27Kip, a Cdk inhibitor of cyclin E and A. In addition, viral cyclin D-Cdk6 is resistant to Cdk inhibitors, such as p21CIP1/WAF1 and p16INK4a which in human cells inhibits Cdk4 by preventing it from forming an active complex with cyclin D. Growth factors stimulate the Ras/Raf/ERK that induce cyclin D production. One of the members of the pathways, MAPK activates a transcription factor Myc, which alters transcription of genes important in cell cycle, among which is cyclin D. In this way, cyclin D is synthesized as long as the growth factor is present.

[ "Cell cycle", "Cyclin", "Cyclin D1", "Cyclin-dependent kinase" ]
Parent Topic
Child Topic
    No Parent Topic