language-icon Old Web
English
Sign In

Thallium

Thallium is a chemical element with the symbol Tl and atomic number 81. It is a gray post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes and Claude-Auguste Lamy discovered thallium independently in 1861, in residues of sulfuric acid production. Both used the newly developed method of flame spectroscopy, in which thallium produces a notable green spectral line. Thallium, from Greek θαλλός, thallós, meaning 'a green shoot or twig', was named by Crookes. It was isolated by both Lamy and Crookes in 1862; Lamy by electrolysis, and Crookes by precipitation and melting of the resultant powder. Crookes exhibited it as a powder precipitated by zinc at the International exhibition, which opened on 1 May that year. Thallium is a chemical element with the symbol Tl and atomic number 81. It is a gray post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes and Claude-Auguste Lamy discovered thallium independently in 1861, in residues of sulfuric acid production. Both used the newly developed method of flame spectroscopy, in which thallium produces a notable green spectral line. Thallium, from Greek θαλλός, thallós, meaning 'a green shoot or twig', was named by Crookes. It was isolated by both Lamy and Crookes in 1862; Lamy by electrolysis, and Crookes by precipitation and melting of the resultant powder. Crookes exhibited it as a powder precipitated by zinc at the International exhibition, which opened on 1 May that year. Thallium tends to oxidize to the +3 and +1 oxidation states as ionic salts. The +3 state resembles that of the other elements in group 13 (boron, aluminium, gallium, indium). However, the +1 state, which is far more prominent in thallium than the elements above it, recalls the chemistry of alkali metals, and thallium(I) ions are found geologically mostly in potassium-based ores, and (when ingested) are handled in many ways like potassium ions (K+) by ion pumps in living cells. Commercially, thallium is produced not from potassium ores, but as a byproduct from refining of heavy-metal sulfide ores. Approximately 60–70% of thallium production is used in the electronics industry, and the remainder is used in the pharmaceutical industry and in glass manufacturing. It is also used in infrared detectors. The radioisotope thallium-201 (as the soluble chloride TlCl) is used in small, nontoxic amounts as an agent in a nuclear medicine scan, during one type of nuclear cardiac stress test. Soluble thallium salts (many of which are nearly tasteless) are toxic, and they were historically used in rat poisons and insecticides. Use of these compounds has been restricted or banned in many countries, because of their nonselective toxicity. Thallium poisoning usually results in hair loss, although this characteristic symptom does not always surface. Because of its historic popularity as a murder weapon, thallium has gained notoriety as 'the poisoner's poison' and 'inheritance powder' (alongside arsenic). A thallium atom has 81 electrons, arranged in the electron configuration 4f145d106s26p1; of these, the three outermost electrons in the sixth shell are valence electrons. Due to the inert pair effect, the 6s electron pair is relativistically stabilised and it is more difficult to get them involved in chemical bonding than for the heavier elements. Thus, very few electrons are available for metallic bonding, similar to the neighboring elements mercury and lead, and hence thallium, like its congeners, is a soft, highly electrically conducting metal with a low melting point of 304 °C. A number of standard electrode potentials, depending on the reaction under study, are reported for thallium, reflecting the greatly decreased stability of the +3 oxidation state: Thallium is the first element in group 13 where the reduction of the +3 oxidation state to the +1 oxidation state is spontaneous under standard conditions. Since bond energies decrease down the group, with thallium, the energy released in forming two additional bonds and attaining the +3 state is not always enough to outweigh the energy needed to involve the 6s-electrons. Accordingly, thallium(I) oxide and hydroxide are more basic and thallium(III) oxide and hydroxide are more acidic, showing that thallium conforms to the general rule of elements being more electropositive in their lower oxidation states. Thallium is malleable and sectile enough to be cut with a knife at room temperature. It has a metallic luster that, when exposed to air, quickly tarnishes to a bluish-gray tinge, resembling lead. It may be preserved by immersion in oil. A heavy layer of oxide builds up on thallium if left in air. In the presence of water, thallium hydroxide is formed. Sulfuric and nitric acids dissolve thallium rapidly to make the sulfate and nitrate salts, while hydrochloric acid forms an insoluble thallium(I) chloride layer. Thallium has 25 isotopes which have atomic masses that range from 184 to 210. 203Tl and 205Tl are the only stable isotopes and make up nearly all of natural thallium. 204Tl is the most stable radioisotope, with a half-life of 3.78 years. It is made by the neutron activation of stable thallium in a nuclear reactor. The most useful radioisotope, 201Tl (half-life 73 hours), decays by electron capture, emitting X-rays (~70–80 keV), and photons of 135 and 167 keV in 10% total abundance; therefore, it has good imaging characteristics without excessive patient radiation dose. It is the most popular isotope used for thallium nuclear cardiac stress tests.

[ "Analytical chemistry", "Organic chemistry", "Inorganic chemistry", "Metallurgy", "Isotopes of thallium", "Thallium carbonate", "Thallium(I) sulfide", "Tl binding", "Thallium(III) nitrate" ]
Parent Topic
Child Topic
    No Parent Topic