language-icon Old Web
English
Sign In

Data quality

Data quality refers to the condition of a set of values of qualitative or quantitative variables. There are many definitions of data quality but data is generally considered high quality if it is 'fit for intended uses in operations, decision making and planning'. Alternatively, data is deemed of high quality if it correctly represents the real-world construct to which it refers. Furthermore, apart from these definitions, as data volume increases, the question of internal data consistency becomes significant, regardless of fitness for use for any particular external purpose. People's views on data quality can often be in disagreement, even when discussing the same set of data used for the same purpose. Data cleansing may be required in order to ensure data quality. Data quality refers to the condition of a set of values of qualitative or quantitative variables. There are many definitions of data quality but data is generally considered high quality if it is 'fit for intended uses in operations, decision making and planning'. Alternatively, data is deemed of high quality if it correctly represents the real-world construct to which it refers. Furthermore, apart from these definitions, as data volume increases, the question of internal data consistency becomes significant, regardless of fitness for use for any particular external purpose. People's views on data quality can often be in disagreement, even when discussing the same set of data used for the same purpose. Data cleansing may be required in order to ensure data quality. This list is taken from the online book 'Data Quality: High-impact Strategies'. See also the glossary of data quality terms. If the ISO 9000:2015 definition of quality is applied, data quality can be defined as the degree to which a set of characteristics of data fulfills requirements. Examples of characteristics are: completeness, validity, accuracy, consistency, availability and timeliness. Requirements are defined as the need or expectation that is stated, generally implied or obligatory. However, there are also other standards related to data quality. For example, ISO 25012 defines 15 quality dimensions of the data. Quantity and names of the quality dimensions (characteristics) can also depend on the source of data. For instance, for data in Web 2.0 documents following dimensions can be defined:: accessibility, completeness, credibility, involvement, objectivity, readability, relevance, reputation, style, timeliness, uniqueness, usefulness. Before the rise of the inexpensive computer data storage, massive mainframe computers were used to maintain name and address data for delivery services. This was so that mail could be properly routed to its destination. The mainframes used business rules to correct common misspellings and typographical errors in name and address data, as well as to track customers who had moved, died, gone to prison, married, divorced, or experienced other life-changing events. Government agencies began to make postal data available to a few service companies to cross-reference customer data with the National Change of Address registry (NCOA). This technology saved large companies millions of dollars in comparison to manual correction of customer data. Large companies saved on postage, as bills and direct marketing materials made their way to the intended customer more accurately. Initially sold as a service, data quality moved inside the walls of corporations, as low-cost and powerful server technology became available. Companies with an emphasis on marketing often focused their quality efforts on name and address information, but data quality is recognized as an important property of all types of data. Principles of data quality can be applied to supply chain data, transactional data, and nearly every other category of data found. For example, making supply chain data conform to a certain standard has value to an organization by: 1) avoiding overstocking of similar but slightly different stock; 2) avoiding false stock-out; 3) improving the understanding of vendor purchases to negotiate volume discounts; and 4) avoiding logistics costs in stocking and shipping parts across a large organization. For companies with significant research efforts, data quality can include developing protocols for research methods, reducing measurement error, bounds checking of data, cross tabulation, modeling and outlier detection, verifying data integrity, etc. There are a number of theoretical frameworks for understanding data quality. A systems-theoretical approach influenced by American pragmatism expands the definition of data quality to include information quality, and emphasizes the inclusiveness of the fundamental dimensions of accuracy and precision on the basis of the theory of science (Ivanov, 1972). One framework, dubbed 'Zero Defect Data' (Hansen, 1991) adapts the principles of statistical process control to data quality. Another framework seeks to integrate the product perspective (conformance to specifications) and the service perspective (meeting consumers' expectations) (Kahn et al. 2002). Another framework is based in semiotics to evaluate the quality of the form, meaning and use of the data (Price and Shanks, 2004). One highly theoretical approach analyzes the ontological nature of information systems to define data quality rigorously (Wand and Wang, 1996). A considerable amount of data quality research involves investigating and describing various categories of desirable attributes (or dimensions) of data. Nearly 200 such terms have been identified and there is little agreement in their nature (are these concepts, goals or criteria?), their definitions or measures (Wang et al., 1993). Software engineers may recognize this as a similar problem to 'ilities'.

[ "Database", "Data mining", "quality", "Master data management", "Source Data Verification", "spatial data quality", "Data cleansing", "Data governance" ]
Parent Topic
Child Topic
    No Parent Topic