language-icon Old Web
English
Sign In

Lewis acids and bases

A Lewis acid is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any species that has a filled orbital containing an electron pair which is not involved in bonding but may form a dative bond with a Lewis acid to form a Lewis adduct. For example, NH3 is a Lewis base, because it can donate its lone pair of electrons. Trimethylborane (Me3B) is a Lewis acid as it is capable of accepting a lone pair. In a Lewis adduct, the Lewis acid and base share an electron pair furnished by the Lewis base, forming a dative bond. In the context of a specific chemical reaction between NH3 and Me3B, the lone pair from NH3 will form a dative bond with the empty orbital of Me3B to form an adduct NH3•BMe3. The terminology refers to the contributions of Gilbert N. Lewis. A Lewis acid is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any species that has a filled orbital containing an electron pair which is not involved in bonding but may form a dative bond with a Lewis acid to form a Lewis adduct. For example, NH3 is a Lewis base, because it can donate its lone pair of electrons. Trimethylborane (Me3B) is a Lewis acid as it is capable of accepting a lone pair. In a Lewis adduct, the Lewis acid and base share an electron pair furnished by the Lewis base, forming a dative bond. In the context of a specific chemical reaction between NH3 and Me3B, the lone pair from NH3 will form a dative bond with the empty orbital of Me3B to form an adduct NH3•BMe3. The terminology refers to the contributions of Gilbert N. Lewis. The terms nucleophile and electrophile are more or less interchangeable with Lewis base and Lewis acid, respectively. However, these terms, especially their abstract noun forms nucleophilicity and electrophilicity, emphasize the kinetic aspect of reactivity, while the Lewis basicity and Lewis acidity emphasize the thermodynamic aspect of Lewis adduct formation. In many cases, the interaction between the Lewis base and Lewis acid in a complex is indicated by an arrow indicating the Lewis base donating electrons toward the Lewis acid using the notation of a dative bond—for example, Me3B←NH3. Some sources indicate the Lewis base with a pair of dots (the explicit electrons being donated), which allows consistent representation of the transition from the base itself to the complex with the acid: A center dot may also be used to represent a Lewis adduct, such as Me3B•NH3. Another example is boron trifluoride diethyl etherate, BF3•Et2O. (In a slightly different usage, the center dot is also used to represent hydrate coordination in various crystals, as in MgSO4•7H2O for hydrated magnesium sulfate, irrespective of whether the water forms a dative bond with the metal.) Although there have been attempts to use computational and experimental energetic criteria to distinguish dative bonding from non-dative covalent bonds, for the most part, the distinction merely makes note of the source of the electron pair, and dative bonds, once formed, behave simply as other covalent bonds do, though they typically have considerable polar character. Moreover, in some cases (e.g., sulfoxides and amine oxides as R2S→O and R3N→O), the use of the dative bond arrow is just a notational convenience for avoiding the drawing of formal charges. In general, however, the donor–acceptor bond is viewed as simply somewhere along a continuum between idealized covalent bonding and ionic bonding. Classically, the term 'Lewis acid' is restricted to trigonal planar species with an empty p orbital, such as BR3 where R can be an organic substituent or a halide. For the purposes of discussion, even complex compounds such as Et3Al2Cl3 and AlCl3 are treated as trigonal planar Lewis acids. Metal ions such as Na+, Mg2+, and Ce3+, which are invariably complexed with additional ligands, are often sources of coordinatively unsaturated derivatives that form Lewis adducts upon reaction with a Lewis base. Other reactions might simply be referred to as 'acid-catalyzed' reactions. Some compounds, such as H2O, are both Lewis acids and Lewis bases, because they can either accept a pair of electrons or donate a pair of electrons, depending upon the reaction.

[ "Catalysis", "Borenium ion", "Gallium triflate", "Crotylstannane", "Mukaiyama aldol addition", "Allyltrichlorosilane" ]
Parent Topic
Child Topic
    No Parent Topic