language-icon Old Web
English
Sign In

Vortex-induced vibration

In fluid dynamics, vortex-induced vibrations (VIV) are motions induced on bodies interacting with an external fluid flow, produced by – or the motion producing – periodical irregularities on this flow. In fluid dynamics, vortex-induced vibrations (VIV) are motions induced on bodies interacting with an external fluid flow, produced by – or the motion producing – periodical irregularities on this flow. A classical example is the VIV of an underwater cylinder. You can see how this happens by putting a cylinder into the water (a swimming-pool or even a bucket) and moving it through the water in the direction perpendicular to its axis. Since real fluids always present some viscosity, the flow around the cylinder will be slowed down while in contact with its surface, forming the so-called boundary layer. At some point, however, this boundary layer can separate from the body because of its excessive curvature. Vortices are then formed changing the pressure distribution along the surface. When the vortices are not formed symmetrically around the body (with respect to its midplane), different lift forces develop on each side of the body, thus leading to motion transverse to the flow. This motion changes the nature of the vortex formation in such a way as to lead to a limited motion amplitude (differently, than, from what would be expected in a typical case of resonance). VIV manifests itself on many different branches of engineering, from cables to heat exchanger tube arrays. It is also a major consideration in the design of ocean structures. Thus study of VIV is a part of a number of disciplines, incorporating fluid mechanics, structural mechanics, vibrations, computational fluid dynamics (CFD), acoustics, statistics, and smart materials.

[ "Vortex", "Vibration", "Cylinder" ]
Parent Topic
Child Topic
    No Parent Topic