language-icon Old Web
English
Sign In

Magnetized Liner Inertial Fusion

Magnetized Liner Inertial Fusion (MagLIF) is an emerging method of producing controlled nuclear fusion. It is part of the broad category of inertial fusion energy (IFE) systems, which uses the inward movement of the fusion fuel to reach densities and temperatures where fusion reactions take place. Previous IFE experiments used laser drivers to reach these conditions, whereas MagLIF uses a combination of lasers for heating and Z-pinch for compression. A variety of theoretical considerations suggest such a system will reach the required conditions for fusion with a machine of significantly less complexity than the pure-laser approach. Magnetized Liner Inertial Fusion (MagLIF) is an emerging method of producing controlled nuclear fusion. It is part of the broad category of inertial fusion energy (IFE) systems, which uses the inward movement of the fusion fuel to reach densities and temperatures where fusion reactions take place. Previous IFE experiments used laser drivers to reach these conditions, whereas MagLIF uses a combination of lasers for heating and Z-pinch for compression. A variety of theoretical considerations suggest such a system will reach the required conditions for fusion with a machine of significantly less complexity than the pure-laser approach. MagLIF is a method of generating energy by using a 100 nanosecond pulse of electricity to create an intense Z-pinch magnetic field that inwardly crushes a fuel filled cylindrical metal liner (a hohlraum) through which the electric pulse runs. Just before the cylinder implodes, a laser is used to preheat fusion fuel (such as deuterium-tritium) that is held within the cylinder and contained by a magnetic field. Sandia National Labs is currently exploring the potential for this method to generate energy by utilizing the Z machine. MagLIF has characteristics of both Inertial confinement fusion (due to the usage of a laser and pulsed compression) and magnetic confinement (due to the utilization of a powerful magnetic field to inhibit thermal conduction and contain the plasma). In results published in 2012, a LASNEX based computer simulation of a 70 megaampere facility showed the prospect of a spectacular energy return of 1000 times the expended energy. A 60 MA facility would produce a 100x yield. The currently available facility at Sandia, Z machine, is capable of 27 MA and may be capable of producing slightly more than breakeven energy while helping to validate the computer simulations. The Z-machine conducted MagLIF experiments in November 2013 with a view towards breakeven experiments using D-T fuel in 2018. Sandia Labs planned to proceed to ignition experiments after establishing the following: Following these experiments, an integrated test started in November 2013. The test yielded about 1010 high-energy neutrons. As of November 2013, the facility at Sandia labs had the following capabilities: In 2014, the test yielded up to 2×1012 D-D neutrons under the following conditions: Experiments aiming for energy breakeven with D-T fuel are expected to occur in 2018.To achieve scientific breakeven, the facility is going through a 5-year upgrade to :

[ "Inertial confinement fusion", "Cylinder", "Implosion", "Z Pulsed Power Facility" ]
Parent Topic
Child Topic
    No Parent Topic