language-icon Old Web
English
Sign In

Electrodeless lamp

The internal electrodeless lamp or induction lamp is a gas discharge lamp in which an electric or magnetic field transfers the power required to generate light from outside the lamp envelope to the gas inside. This is in contrast to a typical gas discharge lamp that uses internal electrodes connected to the power supply by conductors that pass through the lamp envelope. Eliminating the internal electrodes provides two advantages: The internal electrodeless lamp or induction lamp is a gas discharge lamp in which an electric or magnetic field transfers the power required to generate light from outside the lamp envelope to the gas inside. This is in contrast to a typical gas discharge lamp that uses internal electrodes connected to the power supply by conductors that pass through the lamp envelope. Eliminating the internal electrodes provides two advantages: Two systems are common: plasma lamps, in which electrostatic induction energizes a bulb filled with sulfur vapor or metal halides, and fluorescent induction lamps, which are like a conventional fluorescent lamp bulb that induces current with an external coil of wire via electrodynamic induction. Nikola Tesla demonstrated wireless transfer of power to electrodeless lamps in his lectures and articles in the 1890s, and subsequently patented a system of light and power distribution on those principles. In 1967 and 1968, John Anderson of General Electric applied for patents for electrodeless lamps.In 1971, Fusion UV Systems installed a 300-watt electrodeless microwave plasma UV lamp on a Coors can production line. Philips introduced their QL induction lighting systems, operating at 2.65 MHz, in 1990 in Europe and in 1992 in the US. Matsushita had induction light systems available in 1992. Intersource Technologies also announced one in 1992, called the E-lamp. Operating at 13.6 MHz, it was available on the US market in 1993. In 1990, Michael Ury, Charles Wood and colleagues formulated the concept of the sulphur lamp. With support from the United States Department of Energy, it was further developed in 1994 by Fusion Lighting of Rockville, Maryland, a spinoff of the Fusion UV division of Fusion Systems Corporation. Its origins are in microwave discharge light sources used for ultraviolet curing in the semiconductor and printing industries. Since 1994, General Electric has produced its induction lamp Genura with an integrated ballast, operating at 2.65 MHz. In 1996, Osram started selling their Endura induction light system, operating at 250 kHz. It is available in the US as the Sylvania Icetron. In 1997, PQL Lighting introduced in the US the Superior Life Brand induction lighting systems. Most induction lighting systems are rated for 100,000 hours of use before requiring absolute component replacements.

[ "Electronic engineering", "Analytical chemistry", "Electrical engineering", "Utility model", "Optoelectronics" ]
Parent Topic
Child Topic
    No Parent Topic