language-icon Old Web
English
Sign In

Chalcogen

The chalcogens (/ˈkælkədʒɪnz/) are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. It consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioactive element polonium (Po). The chemically uncharacterized synthetic element livermorium (Lv) is predicted to be a chalcogen as well. Often, oxygen is treated separately from the other chalcogens, sometimes even excluded from the scope of the term 'chalcogen' altogether, due to its very different chemical behavior from sulfur, selenium, tellurium, and polonium. The word 'chalcogen' is derived from a combination of the Greek word khalkόs (χαλκός) principally meaning copper (the term was also used for bronze/brass, any metal in the poetic sense, ore or coin), and the Latinised Greek word genēs, meaning born or produced. Sulfur has been known since antiquity, and oxygen was recognized as an element in the 18th century. Selenium, tellurium and polonium were discovered in the 19th century, and livermorium in 2000. All of the chalcogens have six valence electrons, leaving them two electrons short of a full outer shell. Their most common oxidation states are −2, +2, +4, and +6. They have relatively low atomic radii, especially the lighter ones. Lighter chalcogens are typically nontoxic in their elemental form, and are often critical to life, while the heavier chalcogens are typically toxic. All of the chalcogens have some role in biological functions, either as a nutrient or a toxin. The lighter chalcogens, such as oxygen and sulfur, are rarely toxic and usually helpful in their pure form. Selenium is an important nutrient but is also commonly toxic. Tellurium often has unpleasant effects (although some organisms can use it), and polonium is always extremely harmful, both in its chemical toxicity and its radioactivity. Sulfur has more than 20 allotropes, oxygen has nine, selenium has at least five, polonium has two, and only one crystal structure of tellurium has so far been discovered. There are numerous organic chalcogen compounds. Not counting oxygen, organic sulfur compounds are generally the most common, followed by organic selenium compounds and organic tellurium compounds. This trend also occurs with chalcogen pnictides and compounds containing chalcogens and carbon group elements. Oxygen is generally extracted from air and sulfur is extracted from oil and natural gas. Selenium and tellurium are produced as byproducts of copper refining. Polonium and livermorium are most available in particle accelerators. The primary use of elemental oxygen is in steelmaking. Sulfur is mostly converted into sulfuric acid, which is heavily used in the chemical industry. Selenium's most common application is glassmaking. Tellurium compounds are mostly used in optical disks, electronic devices, and solar cells. Some of polonium's applications are due to its radioactivity. Chalcogens show similar patterns in electron configuration, especially in the outermost shells, where they all have the same number of valence electrons, resulting in similar trends in chemical behavior: All chalcogens have six valence electrons. All of the solid, stable chalcogens are soft and do not conduct heat well. Electronegativity decreases towards the chalcogens with higher atomic numbers. Density, melting and boiling points, and atomic and ionic radii tend to increase towards the chalcogens with higher atomic numbers. Out of the six known chalcogens, one (oxygen) has an atomic number equal to a nuclear magic number, which means that their atomic nuclei tend to have increased stability towards radioactive decay. Oxygen has three stable isotopes, and 14 unstable ones. Sulfur has four stable isotopes, 20 radioactive ones, and one isomer. Selenium has six observationally stable or nearly stable isotopes, 26 radioactive isotopes, and 9 isomers. Tellurium has eight stable or nearly stable isotopes, 31 unstable ones, and 17 isomers. Polonium has 42 isotopes, none of which are stable. It has an additional 28 isomers. In addition to the stable isotopes, some radioactive chalcogen isotopes occur in nature, either because they are decay products, such as 210Po, because they are primordial, such as 82Se, because of cosmic ray spallation, or via nuclear fission of uranium. Livermorium isotopes 290 through 293 have been discovered. The most stable livermorium isotope is 293Lv, which has a half-life of 0.061 seconds.

[ "Atom", "Crystallography", "Organic chemistry", "Nuclear physics", "Chalcogel" ]
Parent Topic
Child Topic
    No Parent Topic