language-icon Old Web
English
Sign In

Normal operator

In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : H → H that commutes with its hermitian adjoint N*, that is: NN* = N*N. In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : H → H that commutes with its hermitian adjoint N*, that is: NN* = N*N. Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are A normal matrix is the matrix expression of a normal operator on the Hilbert space Cn. Normal operators are characterized by the spectral theorem. A compact normal operator (in particular, a normal operator on a finite-dimensional linear space) is unitarily diagonalizable. Let T be a bounded operator. The following are equivalent. If N is a normal operator, then N and N* have the same kernel and the same range. Consequently, the range of N is dense if and only if N is injective. Put in another way, the kernel of a normal operator is the orthogonal complement of its range. It follows that the kernel of the operator Nk coincides with that of N for any k. Every generalized eigenvalue of a normal operator is thus genuine. λ is an eigenvalue of a normal operator N if and only if its complex conjugate λ ¯ {displaystyle {overline {lambda }}} is an eigenvalue of N*. Eigenvectors of a normal operator corresponding to different eigenvalues are orthogonal, and a normal operator stabilizes the orthogonal complement of each of its eigenspaces. This implies the usual spectral theorem: every normal operator on a finite-dimensional space is diagonalizable by a unitary operator. There is also an infinite-dimensional version of the spectral theorem expressed in terms of projection-valued measures. The residual spectrum of a normal operator is empty. The product of normal operators that commute is again normal; this is nontrivial, but follows directly from Fuglede's theorem, which states (in a form generalized by Putnam): The operator norm of a normal operator equals its numerical radius and spectral radius. A normal operator coincides with its Aluthge transform.

[ "Hilbert space", "Shift operator", "Compact operator", "Multiplication operator", "Finite-rank operator" ]
Parent Topic
Child Topic
    No Parent Topic