language-icon Old Web
English
Sign In

Animal communication

Animal communication is the transfer of information from one or a group of animals (sender or senders) to one or more other animals (receiver or receivers) that affects the current or future behavior of the receivers. Information may be sent intentionally, as in a courtship display, or unintentionally, as in the transfer of scent from predator to prey. Information may be transferred to an 'audience' of several receivers. Animal communication is a rapidly growing area of study in disciplines including animal behavior, sociology, neurology and animal cognition. Many aspects of animal behavior, such as symbolic name use, emotional expression, learning and sexual behavior, are being understood in new ways. When the information from the sender changes the behavior of a receiver, the information is referred to as a 'signal'. Signalling theory predicts that for a signal to be maintained in the population, both the sender and receiver should usually receive some benefit from the interaction. Signal production by senders and the perception and subsequent response of receivers are thought to coevolve. Signals often involve multiple mechanisms, e.g. both visual and auditory, and for a signal to be understood the coordinated behaviour of both sender and receiver require careful study. Many animals communicate through vocalization. Vocal communication serves many purposes, including mating rituals, warning calls, conveying location of food sources, and social learning. In a number of species, males perform calls during mating rituals as a form of competition against other males and to signal females. Examples include frogs, hammer-headed bats, red deer, humpback whales, elephant seals, and songbirds. Other instances of vocal communication include the alarm calls of the Campbell monkey, the territorial calls of gibbons, and the use of frequency in greater spear-nosed bats to distinguish between groups. The vervet monkey gives a distinct alarm call for each of its four different predators, and the reactions of other monkeys vary appropriately according to the call. For example, if an alarm call signals a python, the monkeys climb into the trees, whereas the 'eagle' alarm causes monkeys to seek a hiding place on the ground. Prairie dogs also use complex calls that signal predator differences. According to Con Slobodchikoff and others, prairie dog calls communicate the type, size, and speed of an approaching predator. Whale vocalizations have been found to have different dialects based on region. Not all animals use vocalization as a means of auditory communication. Many arthropods rub specialized body parts together to produce sound. This is known as stridulation. Crickets and grasshoppers are well known for this, but many others use stridulation as well, including crustaceans, spiders, scorpions, wasps, ants, beetles, butterflies, moths, millipedes, and centipedes. Another means of auditory communication is the vibration of swim bladders in bony fish. The structure of swim bladders and the attached sonic muscles varies greatly across bony fish families, resulting in a wide variety of sounds. Striking body parts together can also produce auditory signals. A well-known example of this is the tail tip vibration of rattlesnakes as a warning signal. Other examples include bill clacking in birds, wing clapping in manakin courtship displays, and chest beating in gorillas. Despite being the oldest method of communication, chemical communication is one of the least understood forms due in part to the sheer abundance of chemicals in our environment and the difficulty of detecting and measuring all the chemicals in a sample. The ability to detect chemicals in the environment serves many functions, a crucial one being the detection of food, a function that first arose in single-celled organisms (bacteria) living in the oceans during the early days of life on Earth. As this function evolved, organisms began to differentiate between chemicals compounds emanating from resources, conspecifics (same species; i.e., mates and kin), and heterospecifics (different species; i.e., competitors and predators). For instance, a small minnow species may do well to avoid habitat with a detectable concentration of chemical cue associated with a predator species such as northern pike. Minnows with the ability to perceive the presence of predators before they are close enough to be seen and then respond with adaptive behaviour (such as hiding) are more likely to survive and reproduce. Scent marking and scent rubbing are common forms of olfactory communication in mammals. Electrocommunication is a rare form of communication in animals. It is seen primarily in aquatic animals, though some land mammals, notably the platypus and echidnas, sense electric fields that might be used for communication. Weakly electric fishes provide an example of electrocommunication, together with electrolocation. These fish use an electric organ to generate an electric field, which is detected by electroreceptors. Differences in the waveform and frequency of changes in the field convey information on species, sex, and identity. These electric signals can be generated in response to hormones, circadian rhythms, and interactions with other fish. Some predators, such as sharks and rays, are able to eavesdrop on these electrogenic fish through passive electroreception.

[ "Ecology", "Communication", "Evolutionary biology", "Zoology", "Contact call", "vocal signature", "Presbytis johnii", "Animal Vocalizations", "Thryothorus nigricapillus" ]
Parent Topic
Child Topic
    No Parent Topic