language-icon Old Web
English
Sign In

Sequence analysis

In bioinformatics, sequence analysis is the process of subjecting a DNA, RNA or peptide sequence to any of a wide range of analytical methods to understand its features, function, structure, or evolution. Methodologies used include sequence alignment, searches against biological databases, and others. Since the development of methods of high-throughput production of gene and protein sequences, the rate of addition of new sequences to the databases increased exponentially. Such a collection of sequences does not, by itself, increase the scientist's understanding of the biology of organisms. However, comparing these new sequences to those with known functions is a key way of understanding the biology of an organism from which the new sequence comes. Thus, sequence analysis can be used to assign function to genes and proteins by the study of the similarities between the compared sequences. Nowadays, there are many tools and techniques that provide the sequence comparisons (sequence alignment) and analyze the alignment product to understand its biology. In bioinformatics, sequence analysis is the process of subjecting a DNA, RNA or peptide sequence to any of a wide range of analytical methods to understand its features, function, structure, or evolution. Methodologies used include sequence alignment, searches against biological databases, and others. Since the development of methods of high-throughput production of gene and protein sequences, the rate of addition of new sequences to the databases increased exponentially. Such a collection of sequences does not, by itself, increase the scientist's understanding of the biology of organisms. However, comparing these new sequences to those with known functions is a key way of understanding the biology of an organism from which the new sequence comes. Thus, sequence analysis can be used to assign function to genes and proteins by the study of the similarities between the compared sequences. Nowadays, there are many tools and techniques that provide the sequence comparisons (sequence alignment) and analyze the alignment product to understand its biology. Sequence analysis in molecular biology includes a very wide range of relevant topics: In chemistry, sequence analysis comprises techniques used to determine the sequence of a polymer formed of several monomers.In molecular biology and genetics, the same process is called simply 'sequencing'. In marketing, sequence analysis is often used in analytical customer relationship management applications, such as NPTB models (Next Product to Buy). In sociology, sequence methods are increasingly used to study life-course and career trajectories, patterns of organizational and national development, conversation and interaction structure, and the problem of work/family synchrony. This body of research has given rise to the emerging subfield of social sequence analysis. Since the very first sequences of the insulin protein were characterized by Fred Sanger in 1951, biologists have been trying to use this knowledge to understand the function of molecules. He and his colleague’s discoveries contributed to the successful sequence the first DNA-based genome. The method used in this study, which is called “Sanger method” or Sanger sequencing, was a milestone in sequencing long strand molecule such as DNA. This method was eventually used in human genome project. According to Michael Levitt, sequence analysis was born in the period from 1969-1977. In 1969 the analysis of sequences of transfer RNAs were used to infer residue interactions from correlated changes in the nucleotide sequences, giving rise to a model of the tRNA secondary structure. In 1970, Saul B. Needleman and Christian D. Wunsch published the first computer algorithm for aligning two sequences. Over this time, developments in obtaining nucleotide sequence greatly improved, leading to the publication of the first complete genome of a bacteriophage in 1977. Robert Holley and his team in Cornell University was believed to be the first to sequence RNA molecule. There are millions of protein and nucleotide sequences known. These sequences fall into many groups of related sequences known as protein families or gene families. Relationships between these sequences are usually discovered by aligning them together and assigning this alignment a score. There are two main types of sequence alignment. Pair-wise sequence alignment only compares two sequences at a time and multiple sequence alignment compares many sequences. Two important algorithms for aligning pairs of sequences are the Needleman-Wunsch algorithm and the Smith-Waterman algorithm. Popular tools for sequence alignment include: A common use for pairwise sequence alignment is to take a sequence of interest and compare it to all known sequences in a database to identify homologous sequences. In general, the matches in the database are ordered to show the most closely related sequences first, followed by sequences with diminishing similarity. These matches are usually reported with a measure of statistical significance such as an Expectation value. In 1987, Michael Gribskov, Andrew McLachlan, and David Eisenberg introduced the method of profile comparison for identifying distant similarities between proteins. Rather than using a single sequence, profile methods use a multiple sequence alignment to encode a profile which contains information about the conservation level of each residue. These profiles can then be used to search collections of sequences to find sequences that are related. Profiles are also known as Position Specific Scoring Matrices (PSSMs). In 1993, a probabilistic interpretation of profiles was introduced by David Haussler and colleagues using hidden Markov models. These models have become known as profile-HMMs.

[ "Gene", "DNA", "Nakazawaea", "Streptomyces griseoruber", "Family Ruminococcaceae", "Lactobacillus oligofermentans", "genus terrabacter" ]
Parent Topic
Child Topic
    No Parent Topic