language-icon Old Web
English
Sign In

Concept inventory

A concept inventory is a criterion-referenced test designed to help determine whether a student has an accurate working knowledge of a specific set of concepts. Historically, concept inventories have been in the form of multiple-choice tests in order to aid interpretability and facilitate administration in large classes. Unlike a typical, teacher-authored multiple-choice test, questions and response choices on concept inventories are the subject of extensive research. The aims of the research include ascertaining (a) the range of what individuals think a particular question is asking and (b) the most common responses to the questions. Concept inventories are evaluated to ensure test reliability and validity. In its final form, each question includes one correct answer and several distractors. A concept inventory is a criterion-referenced test designed to help determine whether a student has an accurate working knowledge of a specific set of concepts. Historically, concept inventories have been in the form of multiple-choice tests in order to aid interpretability and facilitate administration in large classes. Unlike a typical, teacher-authored multiple-choice test, questions and response choices on concept inventories are the subject of extensive research. The aims of the research include ascertaining (a) the range of what individuals think a particular question is asking and (b) the most common responses to the questions. Concept inventories are evaluated to ensure test reliability and validity. In its final form, each question includes one correct answer and several distractors. Ideally, a score on a criterion-referenced test reflects the amount of content knowledge a student has mastered. Criterion-referenced tests differ from norm-referenced tests in that (in theory) the former is not used to compare an individual's score to the scores of the group. Ordinarily, the purpose of a criterion-referenced test is to ascertain whether a student mastered a predetermined amount of content knowledge; upon obtaining a test score that is at or above a cutoff score, the student can move on to study a body of content knowledge that follows next in a learning sequence. In general, item difficulty values ranging between 30% and 70% are best able to provide information about student understanding. The distractors are incorrect or irrelevant answers that are usually (but not always) based on students' commonly held misconceptions. Test developers often research student misconceptions by examining students' responses to open-ended essay questions and conducting 'think-aloud' interviews with students. The distractors chosen by students help researchers understand student thinking and give instructors insights into students' prior knowledge (and, sometimes, firmly held beliefs). This foundation in research underlies instrument construction and design, and plays a role in helping educators obtain clues about students' ideas, scientific misconceptions, and didaskalogenic ('teacher-induced' or 'teaching-induced') confusions and conceptual lacunae that interfere with learning. Concept inventories are education-related diagnostic tests. In 1985 Halloun and Hestenes introduced a 'multiple-choice mechanics diagnostic test' to examine students' concepts about motion. It evaluates student understanding of basic concepts in classical (macroscopic) mechanics. A little later, the Force Concept Inventory (FCI), another concept inventory, was developed. The FCI was designed to assess student understanding of the Newtonian concepts of force. Hestenes (1998) found that while 'nearly 80% of the could state Newton's Third Law at the beginning of the course. FCI data showed that less than 15% of them fully understood it at the end'.These results have been replicated in a number of studies involving students at a range of institutions (see sources section below). That said, there remains questions as what exactly the FCI measures. Results from Hake (1998) using the FCI have led to greater recognition in the science education community of the importance of students' 'interactive engagement' with the materials to be mastered.

[ "Operations management", "Operations research", "Statistics", "Mathematics education" ]
Parent Topic
Child Topic
    No Parent Topic