language-icon Old Web
English
Sign In

Comparability graph

In graph theory, a comparability graph is an undirected graph that connects pairs of elements that are comparable to each other in a partial order. Comparability graphs have also been called transitively orientable graphs, partially orderable graphs, containment graphs, and divisor graphs.An incomparability graph is an undirected graph that connects pairs of elements that are not comparable to each other in a partial order. In graph theory, a comparability graph is an undirected graph that connects pairs of elements that are comparable to each other in a partial order. Comparability graphs have also been called transitively orientable graphs, partially orderable graphs, containment graphs, and divisor graphs.An incomparability graph is an undirected graph that connects pairs of elements that are not comparable to each other in a partial order. For any strict partially ordered set (S,<), the comparability graph of (S, <) is the graph (S, ⊥) of which the vertices are the elements of S and the edges are those pairs {u, v} of elements such that u < v. That is, for a partially ordered set, take the directed acyclic graph, apply transitive closure, and remove orientation. Equivalently, a comparability graph is a graph that has a transitive orientation, an assignment of directions to the edges of the graph (i.e. an orientation of the graph) such that the adjacency relation of the resulting directed graph is transitive: whenever there exist directed edges (x,y) and (y,z), there must exist an edge (x,z). One can represent any finite partial order as a family of sets, such that x < y in the partial order whenever the set corresponding to x is a subset of the set corresponding to y. In this way, comparability graphs can be shown to be equivalent to containment graphs of set families; that is, a graph with a vertex for each set in the family and an edge between two sets whenever one is a subset of the other.Alternatively, one can represent the partial order by a family of integers, such that x < y whenever the integer corresponding to x is a divisor of the integer corresponding to y. Because of this construction, comparability graphs have also been called divisor graphs. Comparability graphs can be characterized as the graphs such that, for every generalized cycle of odd length, one can find an edge (x,y) connecting two vertices that are at distance two in the cycle. Such an edge is called a triangular chord. In this context, a generalized cycle is defined to be a closed walk that uses each edge of the graph at most once in each direction. Comparability graphs can also be characterized by a list of forbidden induced subgraphs. Every complete graph is a comparability graph, the comparability graph of a total order. All acyclic orientations of a complete graph are transitive. Every bipartite graph is also a comparability graph. Orienting the edges of a bipartite graph from one side of the bipartition to the other results in a transitive orientation, corresponding to a partial order of height two. As Seymour (2006) observes, every comparability graph that is neither complete nor bipartite has a skew partition. The complement of any interval graph is a comparability graph. The comparability relation is called an interval order. Interval graphs are exactly the graphs that are chordal and that have comparability graph complements. A permutation graph is a containment graph on a set of intervals. Therefore, permutation graphs are another subclass of comparability graphs. The trivially perfect graphs are the comparability graphs of rooted trees.Cographs can be characterized as the comparability graphs of series-parallel partial orders; thus, cographs are also comparability graphs.

[ "Chordal graph", "Line graph", "Voltage graph", "Pathwidth", "Indifference graph", "Clebsch graph", "Critical point (set theory)", "Implicit graph", "Transitive reduction", "Skew-symmetric graph" ]
Parent Topic
Child Topic
    No Parent Topic