Formation and evolution of the Solar System

The formation and evolution of the Solar System began 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed.Solar System → Local Interstellar Cloud → Local Bubble → Gould Belt → Orion Arm → Milky Way → Milky Way subgroup → Local Group → Local Sheet → Virgo Supercluster → Laniakea Supercluster → Observable universe → UniverseEach arrow (→) may be read as 'within' or 'part of'. The formation and evolution of the Solar System began 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed. This model, known as the nebular hypothesis was first developed in the 18th century by Emanuel Swedenborg, Immanuel Kant, and Pierre-Simon Laplace. Its subsequent development has interwoven a variety of scientific disciplines including astronomy, physics, geology, and planetary science. Since the dawn of the space age in the 1950s and the discovery of extrasolar planets in the 1990s, the model has been both challenged and refined to account for new observations. The Solar System has evolved considerably since its initial formation. Many moons have formed from circling discs of gas and dust around their parent planets, while other moons are thought to have formed independently and later been captured by their planets. Still others, such as Earth's Moon, may be the result of giant collisions. Collisions between bodies have occurred continually up to the present day and have been central to the evolution of the Solar System. The positions of the planets might have shifted due to gravitational interactions. This planetary migration is now thought to have been responsible for much of the Solar System's early evolution. In roughly 5 billion years, the Sun will cool and expand outward to many times its current diameter (becoming a red giant), before casting off its outer layers as a planetary nebula and leaving behind a stellar remnant known as a white dwarf. In the far distant future, the gravity of passing stars will gradually reduce the Sun's retinue of planets. Some planets will be destroyed, others ejected into interstellar space. Ultimately, over the course of tens of billions of years, it is likely that the Sun will be left with none of the original bodies in orbit around it. Ideas concerning the origin and fate of the world date from the earliest known writings; however, for almost all of that time, there was no attempt to link such theories to the existence of a 'Solar System', simply because it was not generally thought that the Solar System, in the sense we now understand it, existed. The first step toward a theory of Solar System formation and evolution was the general acceptance of heliocentrism, which placed the Sun at the centre of the system and the Earth in orbit around it. This concept had developed for millennia (Aristarchus of Samos had suggested it as early as 250 BC), but was not widely accepted until the end of the 17th century. The first recorded use of the term 'Solar System' dates from 1704. The current standard theory for Solar System formation, the nebular hypothesis, has fallen into and out of favour since its formulation by Emanuel Swedenborg, Immanuel Kant, and Pierre-Simon Laplace in the 18th century. The most significant criticism of the hypothesis was its apparent inability to explain the Sun's relative lack of angular momentum when compared to the planets. However, since the early 1980s studies of young stars have shown them to be surrounded by cool discs of dust and gas, exactly as the nebular hypothesis predicts, which has led to its re-acceptance. Understanding of how the Sun is expected to continue to evolve required an understanding of the source of its power. Arthur Stanley Eddington's confirmation of Albert Einstein's theory of relativity led to his realisation that the Sun's energy comes from nuclear fusion reactions in its core, fusing hydrogen into helium. In 1935, Eddington went further and suggested that other elements also might form within stars. Fred Hoyle elaborated on this premise by arguing that evolved stars called red giants created many elements heavier than hydrogen and helium in their cores. When a red giant finally casts off its outer layers, these elements would then be recycled to form other star systems. The nebular hypothesis says that the Solar System formed from the gravitational collapse of a fragment of a giant molecular cloud. The cloud was about 20 parsec (65 light years) across, while the fragments were roughly 1 parsec (three and a quarter light-years) across. The further collapse of the fragments led to the formation of dense cores 0.01–0.1 pc (2,000–20,000 AU) in size. One of these collapsing fragments (known as the pre-solar nebula) formed what became the Solar System. The composition of this region with a mass just over that of the Sun (M☉) was about the same as that of the Sun today, with hydrogen, along with helium and trace amounts of lithium produced by Big Bang nucleosynthesis, forming about 98% of its mass. The remaining 2% of the mass consisted of heavier elements that were created by nucleosynthesis in earlier generations of stars. Late in the life of these stars, they ejected heavier elements into the interstellar medium. The oldest inclusions found in meteorites, thought to trace the first solid material to form in the pre-solar nebula, are 4568.2 million years old, which is one definition of the age of the Solar System. Studies of ancient meteorites reveal traces of stable daughter nuclei of short-lived isotopes, such as iron-60, that only form in exploding, short-lived stars. This indicates that one or more supernovae occurred near the Sun while it was forming. A shock wave from a supernova may have triggered the formation of the Sun by creating relatively dense regions within the cloud, causing these regions to collapse. Because only massive, short-lived stars produce supernovae, the Sun must have formed in a large star-forming region that produced massive stars, possibly similar to the Orion Nebula. Studies of the structure of the Kuiper belt and of anomalous materials within it suggest that the Sun formed within a cluster of between 1,000 and 10,000 stars with a diameter of between 6.5 and 19.5 light years and a collective mass of 3,000 M☉. This cluster began to break apart between 135 million and 535 million years after formation. Several simulations of our young Sun interacting with close-passing stars over the first 100 million years of its life produce anomalous orbits observed in the outer Solar System, such as detached objects.

[ "Planet", "Meteorite", "Solar System", "Nice model", "Titanium isotope", "Hibonite", "Extinct radionuclide", "Frost line (astrophysics)" ]
Parent Topic
Child Topic
    No Parent Topic