language-icon Old Web
English
Sign In

Extremophile

An extremophile (from Latin extremus meaning 'extreme' and Greek philiā (φιλία) meaning 'love') is an organism that thrives in physically or geochemically extreme conditions that are detrimental to most life on Earth. In contrast, organisms that live in more moderate environments may be termed mesophiles or neutrophiles. In the 1980s and 1990s, biologists found that microbial life has great flexibility for surviving in extreme environments—niches that are acidic or extraordinarily hot, for example—that would be completely inhospitable to complex organisms. Some scientists even concluded that life may have begun on Earth in hydrothermal vents far under the ocean's surface. According to astrophysicist Steinn Sigurdsson, 'There are viable bacterial spores that have been found that are 40 million years old on Earth—and we know they're very hardened to radiation.' Some bacteria were found living in the cold and dark in a lake buried a half-mile deep under the ice in Antarctica, and in the Marianas Trench, the deepest place in Earth's oceans. Some microorganisms have been found thriving inside rocks up to 1,900 feet (580 m) below the sea floor under 8,500 feet (2,600 m) of ocean off the coast of the northwestern United States. According to one of the researchers, 'You can find microbes everywhere—they're extremely adaptable to conditions, and survive wherever they are.' A key to extremophile adaptation is their amino acid composition, affecting their protein folding ability under particular conditions. Tom Gheysens from Ghent University in Belgium and some of his colleagues have presented research findings that show spores from a species of Bacillus bacteria survived and were still viable after being heated to temperatures of 420 °C (788 °F). There are many classes of extremophiles that range all around the globe; each corresponding to the way its environmental niche differs from mesophilic conditions. These classifications are not exclusive. Many extremophiles fall under multiple categories and are classified as polyextremophiles. For example, organisms living inside hot rocks deep under Earth's surface are thermophilic and barophilic such as Thermococcus barophilus. A polyextremophile living at the summit of a mountain in the Atacama Desert might be a radioresistant xerophile, a psychrophile, and an oligotroph. Polyextremophiles are well known for their ability to tolerate both high and low pH levels. Astrobiology is the study of the origin, evolution, distribution, and future of life in the universe: extraterrestrial life and life on Earth. Astrobiology makes use of physics, chemistry, astronomy, solar physics, biology, molecular biology, ecology, planetary science, geography, and geology to investigate the possibility of life on other worlds and help recognize biospheres that might be different from that on Earth. Astrobiologists are particularly interested in studying extremophiles, as their habitats may be analogous to conditions on other planets. For example, analogous deserts of Antarctica are exposed to harmful UV radiation, low temperature, high salt concentration and low mineral concentration. These conditions are similar to those on Mars. Therefore, finding viable microbes in the subsurface of Antarctica suggests that there may be microbes surviving in endolithic communities and living under the Martian surface. Research indicates it is unlikely that Martian microbes exist on the surface or at shallow depths, but may be found at subsurface depths of around 100 meters. Recent research carried out on extremophiles in Japan involved a variety of bacteria including Escherichia coli and Paracoccus denitrificans being subject to conditions of extreme gravity. The bacteria were cultivated while being rotated in an ultracentrifuge at high speeds corresponding to 403,627 g (i.e. 403,627 times the gravity experienced on Earth). Paracoccus denitrificans was one of the bacteria which displayed not only survival but also robust cellular growth under these conditions of hyperacceleration which are usually found only in cosmic environments, such as on very massive stars or in the shock waves of supernovas. Analysis showed that the small size of prokaryotic cells is essential for successful growth under hypergravity. The research has implications on the feasibility of panspermia. On 26 April 2012, scientists reported that lichen survived and showed remarkable results on the adaptation capacity of photosynthetic activity within the simulation time of 34 days under Martian conditions in the Mars Simulation Laboratory (MSL) maintained by the German Aerospace Center (DLR).

[ "Microorganism", "Enzyme", "Bacteria", "Thermophile", "Poecilia sulphuraria", "Thellungiella parvula", "Ramazzottius varieornatus", "Thellungiella salsuginea", "Alcolapia" ]
Parent Topic
Child Topic
    No Parent Topic