language-icon Old Web
English
Sign In

Hybrid solar cell

Hybrid solar cells combine advantages of both organic and inorganic semiconductors. Hybrid photovoltaics have organic materials that consist of conjugated polymers that absorb light as the donor and transport holes. Inorganic materials in hybrid cells are used as the acceptor and electron transporter in the structure. The hybrid photovoltaic devices have a potential for not only low-cost by roll-to-roll processing but also for scalable solar power conversion. Hybrid solar cells combine advantages of both organic and inorganic semiconductors. Hybrid photovoltaics have organic materials that consist of conjugated polymers that absorb light as the donor and transport holes. Inorganic materials in hybrid cells are used as the acceptor and electron transporter in the structure. The hybrid photovoltaic devices have a potential for not only low-cost by roll-to-roll processing but also for scalable solar power conversion. Solar cells are devices that convert sunlight into electricity by the photovoltaic effect. Electrons in a solar cell absorb photon energy in sunlight which excites them to the conduction band from the valence band. This generates a hole-electron pair, which is separated by a potential barrier (such as a p-n junction), and induces a current. Organic solar cells use organic materials in their active layers. Molecular, polymer, and hybrid organic photovoltaics are the main kinds of organic photovoltaic devices currently studied. In hybrid solar cells, an organic material is mixed with a high electron transport material to form the photoactive layer. The two materials are assembled together in a heterojunction-type photoactive layer, which can have a greater power conversion efficiency than a single material. One of the materials acts as the photon absorber and exciton donor. The other material facilitates exciton dissociation at the junction. Charge is transferred and then separated after an exciton created in the donor is delocalized on a donor-acceptor complex. The acceptor material needs a suitable energy offset to the binding energy of the exciton to the absorber. Charge transfer is favorable if the following condition is satisfied: where superscripts A and D refer to the acceptor and donor respectively, EA is the electron affinity, and U the coulombic binding energy of the exciton on the donor. An energy diagram of the interface is shown in figure 1. In commonly used photovoltaic polymers such as MEH-PPV, the exciton binding energy ranges from 0.3 eV to 1.4 eV. The energy required to separate the exciton is provided by the energy offset between the LUMOs or conduction bands of the donor and acceptor. After dissociation, the carriers are transported to the respective electrodes through a percolation network. The average distance an exciton can diffuse through a material before annihilation by recombination is the exciton diffusion length. This is short in polymers, on the order of 5–10 nanometers. The time scale for radiative and non-radiative decay is from 1 picosecond to 1 nanosecond. Excitons generated within this length close to an acceptor would contribute to the photocurrent. To deal with the problem of the short exciton diffusion length, a bulk heterojunction structure is used rather than a phase-separated bilayer. Dispersing the particles throughout the polymer matrix creates a larger interfacial area for charge transfer to occur. Figure 2 displays the difference between a bilayer and a bulk heterojunction.

[ "Polymer solar cell", "Organic solar cell", "Solar cell research", "Nanocrystal solar cell", "Carbon nanotubes in photovoltaics", "Flexible solar cell research" ]
Parent Topic
Child Topic
    No Parent Topic