language-icon Old Web
English
Sign In

Melanopsin

9423330044ENSG00000122375ENSMUSG00000021799Q9UHM6Q9QXZ9NM_033282NM_001030015NM_001128599NM_013887NP_001025186NP_150598NP_001122071NP_038915Melanopsin is a type of photopigment belonging to a larger family of light-sensitive retinal proteins called opsins and encoded by the gene Opn4. In the mammalian retina, there are two additional categories of opsins, both involved in the formation of visual images: rhodopsin and photopsin (types I, II, and III) in the rod and cone photoreceptor cells, respectively. Melanopsin is a type of photopigment belonging to a larger family of light-sensitive retinal proteins called opsins and encoded by the gene Opn4. In the mammalian retina, there are two additional categories of opsins, both involved in the formation of visual images: rhodopsin and photopsin (types I, II, and III) in the rod and cone photoreceptor cells, respectively. In humans, melanopsin is found in intrinsically photosensitive retinal ganglion cells (ipRGCs). It is also found in the iris of mice and primates. Melanopsin is also found in rats, amphioxus, and other chordates. ipRGCs are photoreceptor cells which are particularly sensitive to the absorption of short-wavelength (blue) visible light and communicate information directly to the area of the brain called the suprachiasmatic nucleus (SCN), also known as the central 'body clock', in mammals. Melanopsin plays an important non-image-forming role in the setting of circadian rhythms as well as other functions. Mutations in the Opn4 gene can lead to clinical disorders, such as Seasonal Affective Disorder (SAD). According to one study, melanopsin has been found in eighteen sites in the human brain (outside the retinohypothalamic tract), intracellularly, in a granular pattern, in the cerebral cortex, the cerebellar cortex and several phylogenetically old regions, primarily in neuronal soma, not in nuclei. Melanopsin is also expressed in human cones. However, only 0.11% to 0.55% of human cones express melanopsin and are exclusively found in the peripheral regions of the retina. The human peripheral retina senses light at high intensities that is best explained by four different photopigment classes. Melanopsin was first discovered by Ignacio Provencio as a novel opsin in the melanophores, or light-sensitive skin cells, of the African clawed frog in 1998. A year later, researchers found that mice without any rods or cones, the cells involved in image-forming vision, still entrained to a light-dark cycle. This observation led to the conclusion that neither rods nor cones, located in the outer retina, are necessary for circadian entrainment and that a third class of photoreceptor exists in the mammalian eye. Provencio and colleagues then found in 2000 that melanopsin is also present in mouse retina, specifically in ganglion cells, and that it mediates non-visual photoreceptive tasks. Melanopsin was found to be encoded by Opn4 with orthologs in a variety of organisms. These retinal ganglion cells were found to be innately photosensitive, since they responded to light even while isolated, and were thus named intrinsically photosensitive Retinal Ganglion Cells (ipRGCs). They constitute a third class of photoreceptor cells in the mammalian retina, besides the already known rods and cones, and were shown to be the principal conduit for light input to circadian photoentrainment. In fact, it was later demonstrated by Satchidananda Panda and colleagues that melanopsin pigment may be involved in entrainment of a circadian oscillator to light cycles in mammals since melanopsin was necessary for blind mice to respond to light. Mammals have orthologous melanopsin genes named Opn4m, which are derived from one branch of the Opn4 family, and are approximately 50-55% conserved. However, non-mammalian vertebrates, including chickens and zebrafish, have another version of the melanopsin gene, Opn4x, which appears to have a distinct lineage that diverged from Opn4m about 360 million years ago. Mammals lost the gene Opn4x relatively early in their evolution, leading to a general reduction in photosensory capability. It is thought that this event can be explained by the fact that this occurred during the time in which nocturnal mammals were evolving. The human melanopsin gene, opn4, is expressed in ipRGCs, which comprises only 1-2% of RGCs in the inner mammalian retina, as studied by Samer Hattar and colleagues. The gene spans approximately 11.8 kb and is mapped to the long arm of chromosome 10. The gene includes nine introns and ten exons compared to the four to seven exons typically found in other human opsins. In non-mammalian vertebrates, melanopsin is found in a wider subset of retinal cells, as well as in photosensitive structures outside the retina, such as the iris muscle of the eye, deep brain regions, the pineal gland, and the skin. Paralogs of Opn4 include OPN1LW, OPN1MW, RHO and OPN3 and were discovered by the Genome Project. Melanopsin, like all other animal opsins (e.g. rhodopsin), is a member of the G-protein coupled receptor (GPCR) family. The melanopsin protein has seven alpha helices integrated in the plasma membrane, an N-terminal domain and a C-terminal domain. It resembles invertebrate opsins far more than vertebrate photopigments, especially in its amino acid sequence and downstream signaling cascade. Like invertebrate opsins, it appears to be a photopigment with intrinsic photoisomerase activity and signals through a G-protein of the Gq family. Melanopsin-containing ganglion cells, like rods and cones, exhibit both light and dark adaptation; they adjust their sensitivity according to the recent history of light exposure. However, while rods and cones are responsible for the reception of images, patterns, motion, and color, melanopsin-containing ipRGCs contribute to various reflexive responses of the brain and body to the presence of light. Evidence for melanopsin's physiological light detection has been tested in mice. A mouse cell line that is not normally photosensitive, Neuro-2a, is rendered light-sensitive by the addition of human melanopsin. The photoresponse is selectively sensitive to short-wavelength light (peak absorption ~479 nm), and has an intrinsic photoisomerase regeneration function that is chromatically shifted to longer wavelengths.

[ "Rhodopsin", "Retinal ganglion", "OPN5", "RODS CONES", "Encephalopsin", "Photoisomerase" ]
Parent Topic
Child Topic
    No Parent Topic