language-icon Old Web
English
Sign In

Water on Mars

Almost all water on Mars today exists as ice, though it also exists in small quantities as vapor in the atmosphere. What was thought to be low-volume liquid brines in shallow Martian soil, also called recurrent slope lineae, may be grains of flowing sand and dust slipping downhill to make dark streaks. The only place where water ice is visible at the surface is at the north polar ice cap. Abundant water ice is also present beneath the permanent carbon dioxide ice cap at the Martian south pole and in the shallow subsurface at more temperate conditions. More than 21 million km3 of ice have been detected at or near the surface of Mars, enough to cover the whole planet to a depth of 35 meters (115 ft). Even more ice is likely to be locked away in the deep subsurface. Some liquid water may occur transiently on the Martian surface today, but limited to traces of dissolved moisture from the atmosphere and thin films, which are challenging environments for known life. No large standing bodies of liquid water exist on the planet's surface, because the atmospheric pressure there averages just 600 pascals (0.087 psi), a figure slightly below the vapor pressure of water at its melting point; under average Martian conditions, pure water on the Martian surface would freeze or, if heated to above the melting point, would sublime to vapor. Before about 3.8 billion years ago, Mars may have had a denser atmosphere and higher surface temperatures, allowing vast amounts of liquid water on the surface, possibly including a large ocean that may have covered one-third of the planet. Water has also apparently flowed across the surface for short periods at various intervals more recently in Mars' history. On December 9, 2013, NASA reported that, based on evidence from the Curiosity rover studying Aeolis Palus, Gale Crater contained an ancient freshwater lake that could have been a hospitable environment for microbial life. Many lines of evidence indicate that water ice is abundant on Mars and it has played a significant role in the planet's geologic history. The present-day inventory of water on Mars can be estimated from spacecraft imagery, remote sensing techniques (spectroscopic measurements, radar, etc.), and surface investigations from landers and rovers. Geologic evidence of past water includes enormous outflow channels carved by floods, ancient river valley networks, deltas, and lakebeds; and the detection of rocks and minerals on the surface that could only have formed in liquid water. Numerous geomorphic features suggest the presence of ground ice (permafrost) and the movement of ice in glaciers, both in the recent past and present. Gullies and slope lineae along cliffs and crater walls suggest that flowing water continues to shape the surface of Mars, although to a far lesser degree than in the ancient past. Although the surface of Mars was periodically wet and could have been hospitable to microbial life billions of years ago, the current environment at the surface is dry and subfreezing, probably presenting an insurmountable obstacle for living organisms. In addition, Mars lacks a thick atmosphere, ozone layer, and magnetic field, allowing solar and cosmic radiation to strike the surface unimpeded. The damaging effects of ionizing radiation on cellular structure is another one of the prime limiting factors on the survival of life on the surface. Therefore, the best potential locations for discovering life on Mars may be in subsurface environments. On November 22, 2016, NASA reported finding a large amount of underground ice on Mars; the volume of water detected is equivalent to the volume of water in Lake Superior. In July 2018, Italian scientists reported the discovery of a subglacial lake on Mars, 1.5 km (0.93 mi) below the southern polar ice cap, and extending sideways about 20 km (12 mi), the first known stable body of water on the planet. Understanding the extent and situation of water on Mars is vital to assess the planet’s potential for harboring life and for providing usable resources for future human exploration. For this reason, 'Follow the Water' was the science theme of NASA's Mars Exploration Program (MEP) in the first decade of the 21st century. Discoveries by the 2001 Mars Odyssey, Mars Exploration Rovers (MERs), Mars Reconnaissance Orbiter (MRO), and Mars Phoenix lander have been instrumental in answering key questions about water's abundance and distribution on Mars. The ESA's Mars Express orbiter has also provided essential data in this quest. The Mars Odyssey, Mars Express, MRO, and Mars Science Lander Curiosity rover are still sending back data from Mars, and discoveries continue to be made. The notion of water on Mars preceded the space age by hundreds of years. Early telescopic observers correctly assumed that the white polar caps and clouds were indications of water's presence. These observations, coupled with the fact that Mars has a 24-hour day, led astronomer William Herschel to declare in 1784 that Mars probably offered its inhabitants 'a situation in many respects similar to ours.' By the start of the 20th century, most astronomers recognized that Mars was far colder and drier than Earth. The presence of oceans was no longer accepted, so the paradigm changed to an image of Mars as a 'dying' planet with only a meager amount of water. The dark areas, which could be seen to change seasonally, were then thought to be tracts of vegetation. The man most responsible for popularizing this view of Mars was Percival Lowell (1855–1916), who imagined a race of Martians constructing a network of canals to bring water from the poles to the inhabitants at the equator. Although generating tremendous public enthusiasm, Lowell's ideas were rejected by most astronomers. The majority view of the scientific establishment at the time is probably best summarized by English astronomer Edward Walter Maunder (1851–1928) who compared the climate of Mars to conditions atop a twenty-thousand-foot peak on an arctic island where only lichen might be expected to survive. In the meantime, many astronomers were refining the tool of planetary spectroscopy in hope of determining the composition of the Martian atmosphere. Between 1925 and 1943, Walter Adams and Theodore Dunham at the Mount Wilson Observatory tried to identify oxygen and water vapor in the Martian atmosphere, with generally negative results. The only component of the Martian atmosphere known for certain was carbon dioxide (CO2) identified spectroscopically by Gerard Kuiper in 1947. Water vapor was not unequivocally detected on Mars until 1963.

[ "Martian", "mars surface", "Composition of Mars", "Ore resources on Mars", "Evidence of water on Mars from Mars Odyssey" ]
Parent Topic
Child Topic
    No Parent Topic