language-icon Old Web
English
Sign In

Leidenfrost effect

The Leidenfrost effect is a physical phenomenon in which a liquid, close to a surface that is significantly hotter than the liquid's boiling point, produces an insulating vapor layer that keeps the liquid from boiling rapidly. Because of this 'repulsive force', a droplet hovers over the surface rather than making physical contact with the hot surface. The Leidenfrost effect is a physical phenomenon in which a liquid, close to a surface that is significantly hotter than the liquid's boiling point, produces an insulating vapor layer that keeps the liquid from boiling rapidly. Because of this 'repulsive force', a droplet hovers over the surface rather than making physical contact with the hot surface. This is most commonly seen when cooking, when a few drops of water are sprinkled in a hot pan. If the pan's temperature is at or above the Leidenfrost point, which is approximately 193 °C (379 °F) for water, the water skitters across the pan and takes longer to evaporate than it would take if the water droplets had been sprinkled into a cooler pan. The effect is responsible for the ability of a person to quickly dip a wet finger in molten lead, or blow out a mouthful of liquid nitrogen, without injury. The latter is potentially lethal, particularly should one accidentally swallow the liquid nitrogen. The effect is named after Johann Gottlob Leidenfrost, who described it in A Tract About Some Qualities of Common Water in 1751.

[ "Nucleate boiling" ]
Parent Topic
Child Topic
    No Parent Topic