language-icon Old Web
English
Sign In

Large Hadron Collider

The Large Hadron Collider (LHC) is the world's largest and most powerful particle collider and the largest machine in the world. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundreds of universities and laboratories, as well as more than 100 countries. It lies in a tunnel 27 kilometres (17 mi) in circumference and as deep as 175 metres (574 ft) beneath the France–Switzerland border near Geneva. First collisions were achieved in 2010 at an energy of 3.5 teraelectronvolts (TeV) per beam, about four times the previous world record. After upgrades it reached 6.5 TeV per beam (13 TeV total collision energy, the present world record). At the end of 2018, it entered a two-year shutdown period for further upgrades. The collider has four crossing points, around which are positioned seven detectors, each designed for certain kinds of research. The LHC primarily collides proton beams, but it can also use beams of heavy ions: Lead–lead collisions and proton-lead collisions are typically done for one month per year. The aim of the LHC's detectors is to allow physicists to test the predictions of different theories of particle physics, including measuring the properties of the Higgs boson and searching for the large family of new particles predicted by supersymmetric theories, as well as other unsolved questions of physics. The term hadron refers to composite particles composed of quarks held together by the strong force (as atoms and molecules are held together by the electromagnetic force). The best-known hadrons are the baryons such as protons and neutrons; hadrons also include mesons such as the pion and kaon, which were discovered during cosmic ray experiments in the late 1940s and early 1950s. A collider is a type of a particle accelerator with two directed beams of particles. In particle physics, colliders are used as a research tool: they accelerate particles to relatively high kinetic energies and let them impact other particles. Analysis of the byproducts of these collisions gives scientists good evidence of the structure of the subatomic world and the laws of nature governing it. Many of these byproducts are produced only by high-energy collisions, and they decay after very short periods of time. Thus many of them are hard or nearly impossible to study in other ways. Physicists hope that the Large Hadron Collider will help answer some of the fundamental open questions in physics, concerning the basic laws governing the interactions and forces among the elementary objects, the deep structure of space and time, and in particular the interrelation between quantum mechanics and general relativity. Data are also needed from high-energy particle experiments to suggest which versions of current scientific models are more likely to be correct – in particular to choose between the Standard Model and Higgsless model and to validate their predictions and allow further theoretical development. Many theorists expect new physics beyond the Standard Model to emerge at the TeV energy level, as the Standard Model appears to be unsatisfactory. Issues explored by LHC collisions include:

[ "Quantum electrodynamics", "Quantum mechanics", "Particle physics", "Nuclear physics", "Future Circular Collider", "Circular Electron Positron Collider", "NA48 experiment", "scintillating fibre", "Two-Higgs-doublet model" ]
Parent Topic
Child Topic
    No Parent Topic