language-icon Old Web
English
Sign In

Antimatter

In modern physics, antimatter is defined as a material composed of the antiparticles (or 'partners') of the corresponding particles of ordinary matter. Minuscule numbers of antiparticles are generated daily at particle accelerators – total production has been only a few nanograms – and in natural processes like cosmic ray collisions and some types of radioactive decay, but only a tiny fraction of these have successfully been bound together in experiments to form anti-atoms. No macroscopic amount of antimatter has ever been assembled due to the extreme cost and difficulty of production and handling. In modern physics, antimatter is defined as a material composed of the antiparticles (or 'partners') of the corresponding particles of ordinary matter. Minuscule numbers of antiparticles are generated daily at particle accelerators – total production has been only a few nanograms – and in natural processes like cosmic ray collisions and some types of radioactive decay, but only a tiny fraction of these have successfully been bound together in experiments to form anti-atoms. No macroscopic amount of antimatter has ever been assembled due to the extreme cost and difficulty of production and handling. In theory, a particle and its anti-particle (for example, proton and antiproton) have the same mass, but opposite electric charge and other differences in quantum numbers. For example, a proton has positive charge while an antiproton has negative charge. A collision between any particle and its anti-particle partner leads to their mutual annihilation, giving rise to various proportions of intense photons (gamma rays), neutrinos, and sometimes less-massive particle-antiparticle pairs. Annihilation usually results in a release of energy that becomes available for heat or work. The amount of the released energy is usually proportional to the total mass of the collided matter and antimatter, in accordance with the mass–energy equivalence equation, E=mc2. Antimatter particles bind with one another to form antimatter, just as ordinary particles bind to form normal matter. For example, a positron (the antiparticle of the electron) and an antiproton (the antiparticle of the proton) can form an antihydrogen atom. The nuclei of antihelium have been artificially produced with difficulty, and these are the most complex anti-nuclei so far observed. Physical principles indicate that complex antimatter atomic nuclei are possible, as well as anti-atoms corresponding to the known chemical elements. There is strong evidence that the observable universe is composed almost entirely of ordinary matter, as opposed to an equal mixture of matter and antimatter.This asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. The process by which this inequality between matter and antimatter particles developed is called baryogenesis. Antimatter particles can be defined by their negative baryon number or lepton number, while 'normal' (non-antimatter) matter particles have a positive baryon or lepton number. These two classes of particles are the antiparticle partners of one another. The idea of negative matter appears in past theories of matter that have now been abandoned. Using the once popular vortex theory of gravity, the possibility of matter with negative gravity was discussed by William Hicks in the 1880s. Between the 1880s and the 1890s, Karl Pearson proposed the existence of 'squirts' and sinks of the flow of aether. The squirts represented normal matter and the sinks represented negative matter. Pearson's theory required a fourth dimension for the aether to flow from and into. The term antimatter was first used by Arthur Schuster in two rather whimsical letters to Nature in 1898, in which he coined the term. He hypothesized antiatoms, as well as whole antimatter solar systems, and discussed the possibility of matter and antimatter annihilating each other. Schuster's ideas were not a serious theoretical proposal, merely speculation, and like the previous ideas, differed from the modern concept of antimatter in that it possessed negative gravity. The modern theory of antimatter began in 1928, with a paper by Paul Dirac. Dirac realised that his relativistic version of the Schrödinger wave equation for electrons predicted the possibility of antielectrons. These were discovered by Carl D. Anderson in 1932 and named positrons (a portmanteau of 'positive electron'). Although Dirac did not himself use the term antimatter, its use follows on naturally enough from antielectrons, antiprotons, etc. A complete periodic table of antimatter was envisaged by Charles Janet in 1929.

[ "Lepton", "Positron", "Fermion", "Elementary particle", "Antiproton Decelerator", "Antimatter rocket", "Antiproton Collector", "Gravitational interaction of antimatter", "Antihydrogen" ]
Parent Topic
Child Topic
    No Parent Topic